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Abstract

A central problem in autonomous robotics is how to design programs that determine what the
robot should do next. Behaviour-based control is a popular paradigm, but current approaches
to behaviour design typically involve hand-coded behaviours. The aim of this work is to explore
the use of reinforcement learning to develop autonomous robot behaviours automatically, and
specifically to look at the performance of the resulting behaviours.

This thesis examines the question of whether behaviours for a real behaviour-based, au-
tonomous robot can be learnt under simulation using the Monte Carlo Exploring Starts, ε-soft
On Policy Monte Carlo or linear, gradient-descent Sarsa(λ) algorithms. A further question is
whether the increased performance of learnt behaviours carries through to increased performance
on the real robot. In addition, this work looks at whether continuing to learn on the real robot
causes further improvement in the performance of the behaviour.

A novel method is developed, termed Policy Initialisation, that makes use of the domain
knowledge in an existing, hand-coded behaviour by converting the behaviour into either a re-
inforcement learning policy or an action-value function. This is then used to bootstrap the
learning process.

The Markov Decision Process model is central to reinforcement learning algorithms. This
work examines whether it is possible to use an internal world model in the real robot to suit the
requirements of the Markov Decision Process model.

The methodology used to answer these questions is to take three realistic, non-trivial robotic
tasks, and attempt to learn behaviours for each. The learnt behaviours are then compared with
hand-coded behaviours that have either been published or used in international competition.
The tasks are based on real task requirements for robots used in a RoboCup Formula 2000
robot soccer team. The first is a generic movement behaviour that moves the robot to a target
point. The second requires the robot to dribble the ball in an arc so that the robot maintains
possession and so that the final position is lined up with the goal. The third addresses the
problem of kicking the ball away from the wall.

The results show that for these three different types of behavioural problem, reinforcement
learning on a simulator produced significantly better performance than hand-coded equivalents,
not only under simulation but also on the real robot. In contrast to this, continuing the learning
process on the real robot did not significantly improve performance.

The Policy Initialisation technique is found to accelerate learning for tabular Monte Carlo
methods, but makes minimal improvement and is, in fact, costly to use in conjunction with
linear, gradient-descent Sarsa(λ). This approach, unlike some other techniques for accelerating
learning, does not appear to bias the solution.

Finally, the evidence from this thesis is that internal world models that maintain the require-
ments of Markov Decision Processes can be constructed, and this appears to be a sound approach
to avoiding problems connected with partial observability that have previously occurred in the
use of reinforcement learning in robotic environments.
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Chapter 1

Introduction

Autonomous robots have long held an elusive promise of revolutionising modern life. Despite
this promise, it has turned out to be difficult to write software to make robots perform even
basic tasks autonomously. An idea that has been key in simplifying the problem of programming
robots is to divide a robotic task into a set of behaviours, and program each one separately. Even
so, programming behaviours can still be problematic.

Another approach to devising programs for robots is to teach them, by rewarding their
successes and penalising failures. This approach is called reinforcement learning, and it has
gained popularity recently, largely due to work that established a foundation for it in the theory
of Markov Decision Processes [118, 127]. Reinforcement learning however does not easily scale
to large problems. This thesis combines these two approaches to learn individual behaviours
through reinforcement learning. It develops an approach that might be used to overcome scaling
problems in reinforcement learning, and also produces better performing behaviours than those
programmed by hand.

Experience with developing a robot soccer team for the RoboCup Formula 2000 competition
provided the inspiration for this thesis. Although there are many aspects to developing a robot
soccer team, hand tuning of individual behaviours yielded significant performance improvements.
In addition, it was not clear how far from optimum the tuned behaviours were. As this thesis
will show, significant further improvement was available through the techniques described here.
This thesis focuses on robot soccer, since it is both a rich source of complex, real world problems,
as well as being an engaging and readily understood domain. However, the approach suggested
by this thesis is generally applicable to real world robotic problems of many types.

It is hoped that this work will be useful to robot developers that are currently coding be-
haviours by hand, and in particular, to those developing behaviours for complex problems, where
the optimal solution cannot easily be derived through analysis.

RoboCup is an international soccer competition played between teams of autonomous robots.
The Formula 2000 league have robots that are about 40 by 50 centimetres in size when seen
from above and up to 80 centimetres high. Two teams of 4 robots each play on a field that is
9 by 5 metres. The goals, clearly identified by their yellow or blue colour, are situated at each
end and are 2 metres wide. All of the robots sensory information must come from devices on
the robot, such as cameras, sonar, and laser-range finders.

The RMIT-United team used a behaviour-based approach to control their robots. One of
the behaviours designed for the 1999 competition involved moving behind the ball to shoot at
the goal. The behaviour was split into a sequence of intermediary points that ensured that the
robot went around the ball rather than straight through it. During competition, the robots took
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much too long to move to each point, despite having powerful motors that gave the robots one
of the fastest top speeds in the competition. The problem was that the robot needed to stop
before turning, making the movement very slow. In comparison, many other teams’ robots at
the competition tended to move in smooth curves, so that momentum was not lost, and were
generally faster to get to the ball. In a sense, this is a small problem; one that might have
been resolved by a better understanding the physics of the robots or a better knowledge of past
robotic control systems. For example, Crowley and Reigner [35] had previously looked at the
problem of designing a robotic control system to allow turning and moving forward to occur
simultaneously. However, this small problem pointed out a larger problem with designing robot
control systems in general: basic behaviours that achieve a task are relatively easy to create,
but these behaviours are rarely optimal and are often grossly inefficient.

Debugging problems with robotic behaviours can be difficult. First, problems with one
behaviour may be difficult to isolate from problems with other behaviours, particularly if the
robot is rarely in a situation to activate the behaviour. Second, problems with a behaviour may
be difficult to isolate from problems with the hardware, such as the sensors or actuators. For
example, a sensor’s or actuator’s response might vary. Often robot hardware is unstable while
the behaviours are being developed and this can cause an especially difficult problem for the
behaviour designer. Third, even when problems with other hardware and other behaviours do
not interfere, it is often difficult to test a full range of possible situations and to clearly identify
intended and unintended responses.

The use of simulation can provide some relief for these problems. In simulation, it is possible
to just simulate the robot’s actions in situations where the behaviour is active. In simulation,
hardware issues, such as faulty sensors, or motor variability, can either be simulated, or ignored.
In simulation, it is possible to test the full range of situations where the behaviour is being used.
Simulation, by itself, does not resolve the issue of identifying correct responses, but it does make
this task somewhat easier by removing other factors.

Two factors have inspired this work. The first is the desire to improve the performance of
individual behaviours. Experience suggests that the performance of individual behaviours is
critical to the success of a robot soccer team. It seems likely that high performance will also
be desirable in other fields. In the competitive environment of robot soccer, though, it is not
enough that a new version of a behaviour outperforms the old version; it must outperform the
competition as well. To do this, the behaviour must approach the best possible performance.

The second factor is that the complexity of robot behaviours is becoming greater. For
example, when robots moved slowly, the momentum of the robot did not need to be considered
to navigate successfully. At higher speeds, though, taking account of momentum is important, if
good performance is desired. However, designing a behaviour that adjusts its actions depending
on the momentum is complex. In addition, the navigaion behaviour is just one among many that
need to be adjusted to take account of momentum. Furthermore, there may be other dimensions
to the problem, such as the robot’s angular momentum, that become critical. A way to deal
with this extra complexity is to avoid directly hand-coding behaviours, and instead use some
automatic approach to developing them.

1.1 Markov Decision Processes

A Markov Decision Process is a mathematical model of a process that involves a series of sequen-
tial decisions about what action to take. This model is discussed in more detail in section 2.4.1
on page 19, and it has a strong resemblance to the problem faced by an autonomous robot
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attempting to decide what to do. Interestingly, it can be shown that for any Markov Decision
Process, there exists an optimal policy, or in other words, a mapping of situation to action that
maximises the long term return. This result suggests that if the problem facing an autonomous
robot can be converted to the Markov Decision Process model, then it may be possible to find
the optimal behaviour for the robot. The basic approach used here is to create a simulator,
to define the behavioural task as a Markov Decision Process, and to apply algorithms from
reinforcement learning to attempt to find the optimum, or near optimum, controller.

If the optimisation process is only examined in terms of simulation, there is the danger that
the resulting behaviour will come to rely on features of the simulation, and will not transfer onto
a real world robot. Therefore, this thesis focuses on the performance of these behaviours on real
robots.

1.2 Three Robotic Tasks

This thesis looks specifically at three robotic tasks, all of which are connected to the larger
problem of robot soccer, but may have more general applicability. The first is to move the robot
to a position relative to the current position. In robot soccer, it is important to move quickly,
or rather, to get to the target point in the least amount of time. This is referred to in this thesis
as the efficient movement task. Interestingly, taking the shortest path does not correspond to
taking the least amount of time. Although two wheel robots can spin on the spot, they cannot
move sideways. This makes the problem more complicated than for omni-directional robots that
can move in any direction with roughly equal cost. In addition, the robot does not necessarily
start from rest but may already be moving. Existing momentum has an effect on how quickly
the robot can move in any particular direction.

The second task is to turn while maintaining possession of the ball. This is a typical soccer
task, although not one attempted by all robot soccer teams. It is particularly difficult in robot
soccer, as the robots are not allowed to hold the ball. Furthermore, the shape of the robot must
not contain a concavity that allows for more than a third of the ball to fit inside. This task is
attempted with a two wheel robot that has a fixed shape.

The final task involves kicking the ball when it is near the wall, so that it comes away.
Prior to RoboCup 2002, the playing field for the middle-size robots was surrounded by walls
that prevented the ball from being played “out”. The walls presented a particularly treacherous
obstacle to robots, not merely due to the potential for collision, but more because the robot
might become jammed, and not be able to free itself. Finding a way of playing the ball when
it is near the wall without becoming stuck is a difficult problem. It is one that has similar
characteristics to many other robotic tasks where the potential cost of approaching something
dangerous must be weighed against the benefits of achieving goals.

1.3 Research Questions

In general terms, this thesis explores the advantages and disadvantages of creating behaviours
for behaviour-based robots through reinforcement learning under simulation.

The research questions examined by this thesis can be summarised as follows:

1. Can reinforcement learning algorithms be used to develop better performing physical robot
behaviours than those developed by hand?
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2. If improved behaviours are learnt on a simulator, will that improvement transfer to the
physical robots?

3. Can training be refined on physical robots after training on a simulator?

4. Is it possible to represent the world internally to suit the requirements of a Markov Decision
Process?

5. Is it possible to bootstrap the learning process by using an existing, hand-coded behaviour
as a starting point? In addition, does this bias the solution found?

These questions are now elaborated on in more detail.

1.3.1 Measuring Behaviour Performance

With regard to the first research question, whether one behaviour is better performing than
another, may be open to debate. To reduce ambiguity when comparing two behaviours, it is
useful to quantify the behaviour’s performance in some way. How the performance is quantified
is a central design decision. For example, a behaviour that moves the robot from one point
to another might have its performance measured in terms of the amount of time taken, or
in the expenditure of energy, or it may be some combination. When looking for appropriate
performance measures there are usually several possible choices. However, before two behaviour’s
performances can be compared, the performance measure must first be defined.

In terms of the three behavioural tasks introduced previously, the performance will be quan-
tified as follows. For the efficient movement problem, the basic measure of performance is the
amount of time taken. To avoid having to learn perfectly accurate movement, the target point is
defined as a target region, and so, although the time taken is measured in terms of time to reach
the target region, a small additional penalty is used to encourage behaviours that get closer to
the centre of the target region.

For the “turn ball” task, the basic measure of performance is how far the ball is turned
towards the target. Also, how quickly the movement is performed is also a factor. A final factor,
one that avoids too much of the soccer pitch from being used, is to include a small penalty for
the amount of distance travelled.

The most critical factor in“off wall” task is avoiding collisions with the wall, and in particular,
avoiding stall conditions. Other factors are whether the ball was kicked in the correct direction,
whether it was kicked away from the wall, and how much time was taken.

One difficulty with comparing an approach with what can be done by hand, is that it begs the
question “who’s hand?” Perhaps the hand-crafted behaviours used as examples are mediocre and
a more gifted programmer could do much better. Also, was the programmer deliberately holding
back during development, so as to make a preferred solution look better? The answer applied
here is to only make use of behaviours that have been developed for an international robot soccer
competition, by an expert behaviour designer with several years experience in developing robot
soccer behaviours. Where possible, an additional requirement is to make use of behaviours that
have been published as part of a conference paper presented at an international conference [23].

1.3.2 Transferring Improvement to a Physical Robot

The second question examines the issue of whether a behaviour learnt using reinforcement learn-
ing can successfully “transfer” its performance from the simulator to the real world. Since sim-
ulated environments tend not to be exact models of the environment, it seems inevitable that
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there will be some difference between the performance of a behaviour on the simulator compared
with that on a physical robot. Even so, under most circumstances, one might expect that if there
are two behaviours that are intended to perform some task, one of which is better performing
on the simulator, it seems reasonable to expect that the better behaviour will continue to be
better performing when both are transferred to the robot.

This question underlies the use of simulation to develop or learn new behaviours, and has
been previously examined in terms of robot controllers learnt using other machine learning
techniques [64, 96]. If behaviours that show significant improvement under simulation are not
also improved significantly when tested on a physical robot, this would negate any advantage of
using simulation to develop or learn behaviours.

This question will be examined empirically by looking at instances of simulator improved
behaviours and examining how they perform on a physical robot.

1.3.3 Refining Training on a Physical Robot

The third question pertains to whether or not it is useful to continue learning on the physical
robot, based on the results of the simulator learning. The training method proposed in this
thesis is based on performing most of the learning on a simulator. The main reason for this is
the large number of trials required to converge on a solution. Although the training method
suggests following the learnt behaviour without changing it once it has been transferred to the
robot, a possible adjustment to this approach is to continue the learning process on the physical
robot, in order to further refine the behaviour. One reason for this is that the simulator will not
exactly mimic actual physical effects and continued learning with a reasonable behaviour as a
starting point may be one way to achieve good behaviours.

In order to test this idea, continued learning is attempted with the “turn ball” task. This
task is an example where continued learning might be expected to have a positive effect, since
the simulator was not able to simulate the more subtle effects of the interaction between the ball
and the robot’s fingers. Continued learning will be attempted by transferring the action-values
learnt under simulation and use them on the real robot as a starting point for further learning.

1.3.4 World Representation

The fourth question asks whether it is possible to have an internal representation of the world to
suit the requirements of a Markov Decision Process. The basic requirement of Markov Decision
Processes is that the world state representation be Markovian, or in other words, all of the
necessary information is in the current state and no history of previous states is needed to
decide the next action. For example, say the robot sees the position of the ball, and records
just the position in its internal representation of the world. Over time, it sees a series of ball
positions. Given the current state, or in other words, given knowledge of just the ball position,
the robot can only make a poor estimate of where the ball will be in the next state. Including
past positions in the state representation would allow it to improve its prediction, and this shows
that the state representation is not Markovian.

In general, the aim is to express the combination of past and current ball positions in a
compact way, such as by its current position and velocity. Compact representations are impor-
tant because algorithms that solve or find approximate solutions for Markov Decision Processes
increase in complexity with the number of different states.

The problem of creating a compact Markovian state representation is examined for the three
behavioural tasks mentioned previously.
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1.3.5 Bootstrapping Learning

Reinforcement learning can be a slow process. The early stages of the learning process tend to
investigate many illogical actions due to poor estimates of the expected return associated with
different actions. Sometimes a reasonable mapping of situation to action, in the form of a hand-
coded behaviour, is already available. It seems unnecessary to investigate poorer behaviours than
the hand-coded one. In addition, starting from the hand-coded one may provide a guarantee of
getting a better behaviour than the hand-coded one for algorithms that are proven to always
improve on a non-optimal behaviour, such as policy iteration.

The advantages and disadvantages to bootstrapping reinforcement learning algorithms are
explored in terms of both discrete and continuous state space algorithms. This exploration is
performed in the context of the efficient movement task.

1.4 Contribution

This thesis makes several contributions to the field of behaviour-based robotics. First is a
methodology for developing real robot behaviours using reinforcement learning with a simulator.
This methodology is shown, for all three tasks explored, to produce behaviours that significantly
exceed the performance of hand-coded behaviours that were either published or developed for
international competition. This is important since previous work in this area has generally
produced behaviours that were similar in performance but not significantly better than their
hand-coded equivalents.

Second is the development of three high performance behaviours. In particular, this develop-
ment includes the design of the reinforcement learning parameters that would allow equivalent
behaviours to be produced for other robots given a corresponding simulator. This design infor-
mation is quite general and could be applied to a broad range of robot types.

Third is the introduction and evaluation of a novel approach, termed Policy Initialisation,
that makes use of existing behaviours to bootstrap reinforcement learning. It is evaluated for
the Monte Carlo Exploring Starts, Monte Carlo ε-soft On Policy, and linear, gradient-descent
Sarsa(λ) reinforcement learning algorithms. This thesis demonstrates that there are significant
advantages to using Policy Initialisation with tabular Monte Carlo methods, while there is no
advantage and in fact, learning is slowed by using Policy Initialisation with linear Sarsa(λ).

Last is the development of an approach to designing the internal world model of a real
robot so that it is suitable for behaviours developed using reinforcement learning. The Markov
Decision Process model that forms a basis for reinforcement learning algorithms, contains several
assumptions about the state signal. This work demonstrates an approach to designing the world
model to suit these assumptions, and this appears to form a sound basis for learning behaviours
using reinforcement learning.

1.5 Thesis Structure

This thesis is structured around three robotic tasks that have been carefully chosen to present
a variety of difficult challenges. Prior to explaining those tasks, it is first necessary to provide
background in the form of a literature survey, and this is found in chapter 2. This chapter
surveys recent work in the areas of behaviour-based robotics and reinforcement learning, and
in particular focuses on previous work that has combined the two approaches. Following this,
chapter 3 describes the robot architecture used for the case studies, and in particular, shows
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the modifications made to traditional approaches that make this architecture well suited to
developing behaviours through learning. The subsequent chapter, chapter 4, focuses on the
theoretical contribution of this thesis by explaining the methodology used to specify and learn
behaviours using the architecture mentioned previously. In addition, chapter 4 describes the
detail of the new algorithms used to bootstrap learning based on an existing behaviour. This
leads into chapter 5, which introduces the experimental tasks and provides an overview for how
they will be presented. The tasks themselves are presented in chapters 6, 7, and 8. Chapter 6,
the efficient movement task, looks at the problem of efficient movement for a two wheel robot.
Chapter 7, the“turn ball” task, looks at using the same robot to perform a turn while maintaining
possession of the ball. Chapter 8, the “off wall” task, presents solutions to the problem of
manipulating the ball when it is close to a wall. Finally, conclusions and potential areas for
further work are presented in chapter 9.
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Chapter 2

Literature Survey

This chapter reviews literature relevant to this thesis, and outlines the theoretical background
that forms the basis for the experimental work described in later chapters. It begins with an
introduction to the game of robot soccer. Robot soccer provides the motivation for some of the
experimental work here, however the approach can be considered more general than this. Central
to the game of robot soccer is the requirement that the robots be autonomous. Autonomous
robots are often controlled using some form of behaviour-based technique. The second section
introduces this general approach and discusses some of the variants tried. Following on from
this, the third section looks at how behaviours and possibly other techniques can be used to
move the robot from one spot to another.

In addition to hand-coded approaches to developing movement and other types of behaviour,
a number of researchers have used various types of machine learning. The fourth section intro-
duces reinforcement learning, while the fifth reviews existing work on applying reinforcement
learning to robotic problems. Reinforcement learning is not the only option however, and the
sixth section looks at other approaches that have been tried. Finally, work involving the use of
simulation to learn behaviour for real robots is examined.

2.1 Robot Soccer

RoboCup (The Robot World Cup Initiative) [8, 70] is an international competition that seeks
to progress the field of Artificial Intelligence. There are a number of leagues in this competi-
tion, including both simulated and real robot leagues, with the real robot leagues divided into
legged [48], small (Formula 180) and medium size (Formula 2000). The competition is based
around the game of soccer. Since current robots are not nearly good enough to compete against
human competitors, competition is restricted to other robots. In addition, the robots must be
autonomous, although they are allowed to pool information amongst themselves. The legged
and small league robots play on a pitch that is about the size of a table-tennis table, while the
middle-size pitch is 9 metres by 5 metres. The competition rules are based on FIFA soccer rules,
but are modified to make them appropriate for a robot soccer competition. For example, in the
Formula 2000 league, the robots are allowed to dribble the ball with paddles or “fingers” but
are not allowed to completely capture the ball. This is intended to be similar to the hand-ball
rule in soccer. The RoboCup rules have been continuously evolving, partly to try and make the
game more like real soccer, and partly to ensure that a variety of approaches can be tried and
compared fairly.



2.2. BEHAVIOUR-BASED CONTROL 12

Act

Sense

Model

Plan

ActSense

(a) (b)

Figure 2.1: Comparison of the deliberative (a) and reactive (b) processing cycles. The delibera-
tive cycle involves potentially time consuming modelling and planning phases, whereas reactive
approaches have a tight coupling between sensory perception and action.

Robot soccer is a compelling challenge for Artificial Intelligence. Historically, researchers
focused on two player turn based games such as Chess or Go. Unfortunately, for an intelligent
robot attempting to move and act in a real world, the lessons learned from computer chess
are not very useful. Unlike a chess game, there is little time to deliberate about actions. The
position of objects are often unknown or known with little certainty, and it is often quite difficult
to identify objects that can be sensed.

Since the beginning of the competition, learning behaviours for real robots has been a cen-
tral research issue [70], however many real robot teams, including winning ones such as CS-
Freiburg [52, 51] and Arvand [65], have used hand-coded behaviours. In the following section,
the ideas behind behaviour-based robots are introduced, along with many of the techniques used
to coordinate different behaviours within a single robot.

2.2 Behaviour-Based Control

Prior to the introduction of behaviour-based control, the dominant paradigm for controlling
autonomous robots was based on logical symbolic inferencing. A robotic system would combine
sensory information with a priori knowledge to form a set of beliefs about the environment. It
would then apply logical inference to determine a plan of action that would achieve the desired
goal. This paradigm is variously referred to as either deliberative or hierarchical [6, 99, 100].
The approach is deliberative from the point of view that prior to taking an action, the robot
deliberates over the consequences of that action. It can be considered hierarchical since control is
broken down from high-level goals into sub-goals and finally intermediate actions. The approach
is generally characterised by a processing cycle that includes sense, model, plan, and act phases,
as shown in figure 2.1(a), with each phase making use of the results of the previous one.

The concept of behaviour-based control is generally considered to have originated from
Brooks [25], although Arkin [6] points out that there were a number of precursors, such as
Walter’s 1953 Machina Speculatrix [126]—a tortoise-like robot that could avoid obstacles, seek
weak light, avoid strong light, and dock with a recharging station. Brooks’ original approach was
called the subsumption architecture. In comparison to the sense-model-plan-act processing cycle
of deliberative approaches, the subsumption architecture has a much simpler sense-act cycle
(figure 2.1(b)), and makes use of a number of relatively independent but simpler units. Rather
than having a hierarchy of goals, the subsumption architecture has a series of layers, each of
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which subsume and build on the functionality of those beneath them. For example, the lowest
layer might deal with collision avoidance, while higher layers deal with docking with recharging
stations.

Each layer of the subsumption architecture contains a number of behaviours. Behaviours are
modules that form part of the overall interaction that the robot has with its environment, and
encapsulate an identifiable function or skill. In the subsumption architecture, behaviours are
traditionally augmented finite state machines or AFSMs [26]. By definition they have a small
amount of internal state, while also requiring minimal computation to determine the output, or
actuator control signal, from the input, or sensor value.

In terms of reactive architectures, Matarić [92] draws a distinction between purely reactive,
and behaviour-based. Purely reactive systems, also called reflexive systems, can be represented
by a set of mappings from sensors to actuators. They have no internal memory and instead use
the state of the environment as a form of memory. Behaviour-based strategies are similar to
purely reactive and may have reactive elements, but they can also have internal state and an
internal representation of the world.

2.2.1 Pengi

Agre and Chapman [2] used the environment of a popular computer game called Pengo to
develop a reactive system that played this game. The computer game involves a grid maze with
blocks that can be pushed by a penguin-like figure that the user controls. The penguin is chased
by bees, but the bees can be squashed by pinning them with blocks. The reactive system that
plays this game, called Pengi, does not have time to perform sophisticated reasoning about
which action to take next. Instead it must react to the current situation. Agre and Chapman
realised that it was easier to write a reactive system in terms of particular features of the state of
the environment. For example, rather than refer to bee#1 or diamond#2, they defined features
such as nearest_bee_that_is_chasing_me. This approach dramatically simplifies the rules
used to determine the next action.

2.2.2 Spreading Activation Networks

Maes [83, 84, 86] suggested an approach to solve the lack of goal orientedness of reactive systems.
This approach, termed spreading activation networks, uses a STRIPS-like language to define how
activation is spread both in a forward mode, from active behaviours to those behaviours that
have the active ones as prerequisites, and in a backward mode, from goals to prerequisites of
those goals. Activation levels work on a winner-take-all basis.

2.2.3 Colony Architecture

An extension of the subsumption architecture, called the colony architecture is provided by
Connell [34]. Connell developed a robot to pick up drink cans and dispose of them. The robot,
called Herbert, used a distributed system of microprocessors, each corresponding to a single
behaviour. A laser range finder was used to scan for cans, while the robot wandered about.
When a can was found, the robot arm would position the fingers about the can. When infrared
sensors detected the can, the fingers closed on it. Detecting the can in the fingers triggered
alternate behaviours so that the arm would retract, and the robot would wander in search of a
rubbish bin. An example of an emergent behaviour produced by this design occurred if the can
was dropped on the way to the bin. The robot would immediately start looking for cans again,
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Figure 2.2: Potential field for attracting the robot towards a target region. The “force” is inde-
pendent of the distance from the object.

and potentially pick up the can that it just dropped. This type of recovery from failure can be
difficult to achieve when using deliberative approaches. Here, it is a natural side effect of using
the “can-in-fingers” sensors to switch between behaviours.

2.2.4 Motor Schemas

One alternative to the subsumption architecture, called motor schemas, was introduced by
Arkin [5, 6]. Motor schemas are based on the idea of “potential fields”, some attracting the
robot to goals, others repelling from obstacles or areas of danger. Figure 2.2 shows an example
of a potential field that is intended to attract the robot to a target location. At the same time,
other potential fields may be active, such as the obstacle avoiding potential field in figure 2.3 on
the next page. To determine the combined potential field, the vectors from each active behaviour
are summed together, as shown in figure 2.4 on the facing page. Note that a key insight in this
work is to realise that it is not necessary to calculate vectors for the whole field, simply the ones
for the current location.

Motor schemas are a simple and elegant solution to the problem of navigating in a complex
or cluttered environment. There are, however, some problems with this approach. The first
problem is that the robot can be slow to move around an obstacle as the vector sums tend to
be small in the area where the two conflicting goals, target seeking and obstacle avoidance, are
weighted equally. Another problem is the possibility of generating zero length vectors where the
vectors produced by various behaviours cancel out. Arkin suggests some alterations to the basic
technique to resolve these problems, however the results will still be sub-optimal in some cases.

Motor schemas are based on the position of the robot alone, and other factors, such as the
speed, angular velocity and current heading, are not taken into account. Current heading is
particularly important in two wheel robots as they may need to turn before they can follow the
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Figure 2.3: Potential field for repelling the robot away from an obstacle. The force is proportional
to 1

d2 , where d is the distance to the obstacle.

Figure 2.4: Combined potential field that corresponds to the sum of the vectors from figures 2.2
and 2.3.
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vector that has been decided on.

2.2.5 Saphira

The Saphira architecture produced by Konolige et al. [72] is a sophisticated behaviour-based
system that includes basic, reactive behaviours at the low level, a local perceptual space (LPS)
that tracks nearby objects, and a planning system called PRS-lite (Procedural Reasoning Sys-
tem). A key feature of the behaviours in Saphira, and their coordination, is the use of fuzzy logic
to allow both inputs and outputs to be described in a general way. The use of fuzzy logic with
inputs means that the rules that make up a behaviour can work in terms of whether an object is
near or far, rather than looking at exactly how far away the object is. When multiple behaviours
of the same priority are active, their outputs are combined by looking at the weighted sum, or
centroid, of the actions. Saphira also uses priority to coordinate different behaviours, allowing
one behaviour to override the output of another.

Another interesting characteristic of Saphira is the combination of the local perceptual space
with a technique called anchoring. Anchoring is the process of matching up a priori information
about the map of an office, say, with recent sonar information, thus allowing the robot to infer
its global position. The results of such inferences are available to the low-level behaviours, which
means that behaviours are not completely dependent on raw sensor data when reacting to the
environment.

2.2.6 CMUnited Approach

Rather than arbitrate between behaviours to solve path planning, a simpler approach, used
successfully by the CMUnited Small Robot League team [22, 125], involves dealing only with
the nearest obstacle. Bowling [22] developed different behaviours to move the robot to a target;
to a target but around an obstacle; or to intercept a moving ball. Integrating obstacle avoidance
into the motion behaviour allows this motion to be quite efficient.

2.2.7 Hybrid Architectures

Hybrid architectures, that combine low-level reactive systems with high-level planners have
been investigated by a number of authors [5, 41, 49]. Hybrid architectures attempt to solve the
problem that it can be difficult to “scale-up” behaviour-based systems to tasks that are much
more complicated than following walls and avoiding obstacles.

Most hybrid behaviour-based systems correspond to three-layer architectures, described by
Gat [49]. Such architectures commonly consist of a skill layer, a sequencing layer, and a delib-
erative layer. The skills layer contains behaviour modules that react to the environment in a
feedback loop with minimal internal state. The sequencing layer controls which modules in the
skills layer are active, usually based on the state of the world, but also based on instructions from
the deliberative layer. The term “sequencing layer” may seem to indicate that the behaviours
are activated in a strict sequence. However, it is necessary for the sequencing layer to take into
account the current state of the world, and so this is still largely reactive. Gat allows this layer,
however, the ability to take into account past information, such as where the ball was last seen.
In this thesis, the term “arbitration” is preferred over “sequencing”, on the basis that it avoids
the non-reactive connotation, and also that it must do its most difficult work when there are
two or more behaviour modules contending for control of the robot.
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Input: Angle to target θ
Output: Target left and right wheel velocities vl, vr

1. t← |cos θ| cos θ

2. r ← |sin θ| sin θ

3. vl ← k(t− r)

4. vr ← k(t + r)

Note that k is a constant used to control the maximum velocity, while t and r are temporary
variables.

Algorithm 1: cmu-move-to: Bowling’s move-to-target behaviour

In comparison to the first two layers, the deliberative layer is not required to react instantly
to changes in the environment. Instead it performs planning or search algorithms, supplying
plans or search results to the sequencing layer. As opposed to the sequencing layer considering
the past, the deliberative layer tends to focus on possible future states.

2.3 Basic Movement Behaviour

The problem of how to cause a robot to move efficiently is basic and essential to autonomous
mobile robots and has been extensively studied. There are a number of different types of
movement behaviours that have been used with robots, such as wall-following, corridor following,
and moving to a target. In this section, the focus is on behaviours for moving to a target.
Wheeled robots come in a variety of different configurations, however a common form is to have
two drive wheels whose accelerations can be controlled independently.

A basic approach to this movement problem is for the robot to move forward in a straight
line if it is lined up with the target, or to stop and rotate if it is not. This behaviour produces
slow and careful movement toward the target. If the target moves or if the robot is bumped
off-course, the robot must stop and adjust its trajectory.

The next step up from this behaviour is to allow the robot to turn and move forward at the
same time. Since the two wheel speeds can be controlled independently, the speeds can be held
in ratio to each other, causing the robot to move in an arc. Crowley and Reignier [35] developed
a simple approach to controlling the arc by mapping wheel speed controls to forward velocity
and angular velocity controls. With this approach, it is straightforward to develop behaviours
that turn evenly while moving forward. However, Crowley and Reignier do not provide a specific
target seeking behaviour.

More recently, Bowling [22] demonstrated a set of motion behaviours based on directly setting
target wheel speeds. The basic move-to-target behaviour algorithm is reproduced as algorithm 1.
This behaviour, referred to here as cmu-move-to after the CMUnited RoboCup team that it was
used by, produces quite efficient motion in comparison to behaviours that do not turn and move
simultaneously. Another, more intuitive representation of algorithm 1 is to express the result in
terms of average forward velocity v and angular velocity (rate of change of heading) φ̇. Crowley
and Reignier [35] provide conversion equations, restated here as follows,

φ̇ =
1

2S
(vr − vl) ,
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v =
1

2
(vr + vl) ,

where S is the distance between the wheels in metres. This allows algorithm 1 to be converted
into:

φ̇ =
k

S
(|sin θ| sin θ) ,

v = k |cos θ| cos θ.

These equations show that the turn rate is zero when the target is straight ahead or directly
behind, and increases up to a maximum of k

S
radians per second when the target is perpendicular

to the current direction. The turn rate is positive or negative depending on whether the target
is to the left or right, respectively. The average velocity is either forward or backward depending
on whether or not the target is in front or behind.

Fox et al. [45] developed a sophisticated behaviour-based approach to navigation and collision
avoidance using a dynamic window. The central insight of this approach is to picture the robot’s
state in terms of its velocity space. In this space, defined by forward velocity along one dimension
and angular velocity along the other, a real robot is limited in terms of the maximum acceleration
or deceleration that it can achieve. This limitation can be expressed as a window in the velocity
space, termed a dynamic window, and can be considered a velocity set. In addition, the relative
position of obstacles around the robot can be mapped into the velocity space. This can be used to
find the set of velocities that do not cause collisions given the current position. The intersection
of the two sets yields a set of target velocities that are both physically possible given limited
acceleration, and avoid collisions. Fox et al. then select a single forward velocity and angular
velocity pair from this set by evaluating an objective function that combines considerations of
how well that velocity pair achieves the target heading, clearance and velocity. This was then
tested in an office environment with the Rhino robot.

An example of solving the movement problem through analysis is given by Zheng et al. [131].
They focus on the problem of time-optimal motion control for a mobile robot with two, inde-
pendently driven wheels. They assume that the robot is initially stationary and derive a general
approach for driving the robot to a target position, with or without a specific speed and angular
velocity. They also assume that the space in which the robot moves is unobstructed. Their
control mechanism involves three or four switching times, when the control to the wheels needs
to be changed. They also show that the controls can be “bang-bang”, which means that only
maximum control values are needed.

Elnagar and Hussein [40] have developed an algorithm for moving a two wheel robot between
two poses, that is, between one position and orientation and another position and orientation, by
the application of numerical methods to solve a system of differential equations. Their approach
optimises with respect to energy rather than time, and specifically attempts to minimise the
integral of the squared acceleration to ensure that the movement is smooth. In addition, the
movement is generalised to 3-dimensions. A key insight of this work is to realise that the
smoothness of movement is different from the smoothness of the curve of the path. Jerky
movement is caused by high magnitude acceleration. Avoiding this jerkiness is critical in some
applications. The numerical approach to movement is tested in simulation.

Ball intercept and kicking control for robot soccer has also been analysed by Indiveri [61].
Indiveri made use of a unicycle model of the robot to derive a control formula in terms of the
angular velocity. The control tends to chatter, or behave chaotically, particularly when the
robot is close to the ball. A possible compensation suggested by Indiveri is to clip the angular
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velocity to zero when the ball is close. Indiveri also notes that the control mechanism has been
successfully used by the GMD robot soccer team [61].

The approaches to movement behaviours described so far do not make use of machine learn-
ing. One particular form of machine learning, specifically, reinforcement learning, seems partic-
ularly appropriate for developing robot behaviour, and this is discussed in the next section.

2.4 Reinforcement Learning

Machine learning is an area of Artificial Intelligence that focuses on the problem of systems
that improve themselves. Machine learning has been used to solve a wide variety of problems
and is particularly useful with problems that cannot be solved by analysis. Machine learning
approaches either involve supervised or unsupervised learning. In supervised learning, correct
classification of a training set of examples is provided, whereas unsupervised learning involves
finding groups or clusters without any prior identification of what the clusters are. Reinforcement
learning represents an intermediate approach based on learning from experience. That is, the
learning agent takes some action, senses a change in the environment and also receives a positive
or negative reward. Reward may be delayed with respect to the action that caused it to be
received. That is, the agent needs to be able to learn to act appropriately when the rewards are
received arbitrarily far in the future [67].

Reinforcement learning seems particularly appropriate for learning robotic behaviour.
Robotic problems tend to be of the sort where it is clear when the task is being done cor-
rectly but there is usually no way to determine analytically what action should be taken at
any particular time. For this reason, some form of machine learning seems to be required. In
addition, a sequence of actions may be required to successfully perform a task, meaning that no
single action can be attributed with success, but instead, the whole sequence may have played
a part. Reinforcement learning is largely focused on solving the problem of correctly assigning
credit to actions that may have occurred some time prior to reward being received.

Sutton and Barto [118] provide an overview of the field of reinforcement learning. In particu-
lar, they emphasise that Markov Decision Processes form a sound theoretical basis for reinforce-
ment learning. In this section, the theory of Markov Decision Processes and their associated
algorithms are summarised. In general, the notational conventions are based on those of Sutton
and Barto, with two exceptions. The one-step reward is written as R(s, a, s′) rather than Rss′

a

and the transition probability matrix is written P(s, a, s′) instead of Pss′

a .

2.4.1 Markov Decision Processes

Markov Decision Processes or MDPs are decision processes where the state information used to
make a decision about what action to take is fully observable and has the Markov property. The
term state refers to the current configuration of the environment in which the decision is made.
For finite MDPs, it is a requirement that there are a finite number of unique states, and a finite
number of actions that can be taken from each possible state.

The Markov Property requires that the state signal allow the probability distribution over
possible next states be estimated given the action taken. In essence, the Markov Property is
a requirement that the state signal contain enough information. The precise definition of how
much information is “enough” is determined by considering whether taking into account past
state signals helps in estimating what the next future state will be. Formally, a state signal has
the Markov Property if the probability of an action causing a transition to a state, given the
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current state signal, is the same as the probability given all previous state signals including the
current one, or,

Pr(st+1 = s′|at, st) = Pr(st+1 = s′|at, st, at−1, st−1, . . . , a0, s0).

That is, the probability of the state signal at time t + 1 being s′, given the state signal and
action at time t, is equal to the probability of the state signal at time t + 1 being s ′, given the
whole history of previous state signals and actions. For deterministic systems, this is the same
as saying that the current state signal st and action at uniquely determine the next state signal
st+1.

Another way to look at this issue is to consider a mobile robot moving in an area. Let the
state signal correspond to its position in that area. Two example episodes are examined. At
a certain time, time t, in both episodes the robot is at exactly the same position st. However,
the path of the robot in the two episodes leading up to t were quite different. Even if the
action at in both episodes is the same, the probability distribution of possible next states may
be different. For example, the robots in the two different episodes may have been travelling in
opposite directions. They may not even be facing the same way at time t. On this basis, it can
be said that the state signal is not Markovian. For it to be Markovian it must at least contain
the robot’s direction and speed.

A state is fully observable if the state signal contains enough information to uniquely identify
which state is being referred to. This is closely related to the Markov Property because, in cases
where the state is not fully observable, the state can often be inferred by looking at the full
history of state signals and actions. A state signal may only partially observe the state when
objects are obscured from view. This situation is referred to as partial observability and is
examined further in section 2.4.8 on page 31.

Note that it is desirable for the state signal to be compact. Algorithms based on Markov
Decision Processes increase in complexity with the number of states represented. If it is possible
to reduce the number of states without affecting the Markov property, then the algorithm will
produce a solution more quickly and require less memory to do so.

Formally, a Markov Decision Process consists of a set of states S, a set of actions A, the
policy being followed π, a reward function R, and a transition model P. All possible states
of the process are represented by the set S, while actions are represented by the set A. The
decision making agent in this process follows a policy π : S×A→ [0, 1]. That is to say, π(s, a) for
s ∈ S, a ∈ A represents the probability of taking action a in state s. For MDPs with deterministic
policies, it is common to write π : S → A or π(s) = a where a is the action that will be taken
in state s. Immediate reward is represented by the mapping R : S × A × S → <. This can be
expressed as a function R(s, a, s′), for s, s′ ∈ S and a ∈ A, that yields a real number representing
the immediate reward for taking action a to transition from state s to state s ′. Another way
to think about the reward is that it is the negative of the one-step cost of taking action a and
ending up in state s′. The environment in which actions are taken is represented by a transition
model P : S×A×S→ [0, 1]. This is a function P(s, a, s′) that gives the probability of a transition
from s to s′ given that action a was taken. That is, for all s, s′ ∈ S, a ∈ A,

P(s, a, s′) = Pr(st+1 = s′|st = s, at = a).

This means that given that the state at time t is s and the action at this time is a, then the
probability that the state at time t + 1 will be s′ is P(s, a, s′).

For any Markov Decision Process there exists at least one optimal policy that maximises
the expected discounted total reward for all states. The reward is expected since it may vary for
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stochastic processes. Future reward is often discounted by a factor γ, where 0 < γ ≤ 1. Discount
factors < 1 allow infinitely long episodes to be studied, and also correspond intuitively with the
greater desirability of an immediate reward compared with a distant future reward. A discount
factor of 1 indicates that future rewards are equivalent to immediate ones, and is typically used
where the task is episodic. The optimal policy maximises total reward, which is the accumulated
one-step reward from each step in an episode.

In an episode, the agent traverses a series of states by performing an action at each step and
receiving a reward, and therefore sees a sequence of states, actions, and rewards as follows:

s0, a0, r1, s1, a1, r2, . . . , sn−1, an−1, rn, sn

where s0 is referred to as the start state. The action at step i is ai, which is generated from the
policy π and current state si in such a way that,

Pr(ai = a|si = s) = π(s, a).

The reward ri is the one-step reward after step i, and corresponds to,

ri = R(si, ai, si+1).

In the above example, the state sn terminates the episode and therefore belongs to a subset of
all states known as terminal states.

MDPs are formulated in a number of different ways. For some MDP problems, it is useful
to set a finite horizon that limits the maximum number of steps possible. Indefinite horizon
problems lack a specific maximum, but episodes eventually reach terminal states. Infinite hori-
zon problems, on the other hand, may have episodes of infinite length. Sutton and Barto [118,
page 60] have noted that it is possible to unify indefinite and infinite forms under one nota-
tion. Indefinite horizon problems can be made equivalent to infinite horizon problems by using
absorbing states in place of terminal ones. An absorbing state always transitions to itself with
zero reward. Furthermore, by using a discount factor less than 1, finite horizon problems with
a maximum number of steps N will have total rewards that approach infinite horizon problems,
in the limit as N approaches ∞.

2.4.2 Value Functions

Central to theories about Markov Decision Processes is the idea of the value of a state, or the
value of a state-action pair. Roughly speaking, “value” corresponds to the state’s utility, that
is, how useful it is to the agent to be in that state. The value of a state-action pair corresponds
to how useful it is to be in a state and then take a particular action. More specifically, the
value of a state corresponds to the total expected, discounted reward of being in that state if a
particular policy is applied subsequently. In addition, the value of a state-action pair corresponds
to the total expected, discounted reward of first taking a particular action and then following a
particular policy.

These two types of value can be represented by functions V π(s) and Qπ(s, a) for the values
of states and state-action pairs, respectively. Note that it is necessary to identify which policy
π will be applied since this can affect the value.

Given an episode where policy π was followed, involving some infinite sequence of states
s0, s1, s2, . . ., actions a0, a1, . . . and rewards r1, r2, . . ., the value for a deterministic system can
be calculated from the sum of the discounted rewards received,

r1 + γr2 + γ2r3 + · · · .
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However, for a stochastic system, all paths must be considered, and the corresponding rewards
weighted according to their probability to give the expected value. The value function is there-
fore,

V π(s) = Eπ

{

r1 + γr2 + γ2r3 + · · ·
∣

∣

∣ s0 = s
}

(2.1)

= Eπ

{

∞
∑

k=0

γkrk+1

∣

∣

∣

∣

∣

s0 = s

}

, (2.2)

where Eπ{x} corresponds to the expected value of x if the policy π is followed. From the above
equation, a recursive expression can be derived for V π(s) in terms of the known components of
the MDP,

V π(s) =
∑

a∈
�

π(s, a)
∑

s′∈ �
P(s, a, s′)

[

R(s, a, s′) + γV π(s′)
]

. (2.3)

This is known as the Bellman equation for V π and it forms the basis for dynamic programming
algorithms that find the optimal policy for Markov Decision Processes.

The value of state-action pairs can be defined on the same basis,

Qπ(s, a) = Eπ

{

∞
∑

k=0

γkrk+1

∣

∣

∣

∣

∣

s0 = s, a0 = a

}

. (2.4)

That is, the expected discounted reward when starting from state s with first action a. This is
also referred to as the action-value function. A recursive definition, equivalent to (2.3) can be
derived,

Qπ(s, a) =
∑

s′∈ �
P(s, a, s′)

[

R(s, a, s′) + γV π(s′)
]

(2.5)

= R(s, a) + γ
∑

s′∈ �
P(s, a, s′)

∑

a′∈
�

π(s′, a′)Qπ(s′, a′), (2.6)

where R(s, a) is the expected one-step reward of taking action a in state s, and corresponds to
∑

s′ P(s, a, s′)R(s, a, s′).

2.4.3 Optimal Value Functions

The optimal action-value function is denoted with a ∗ and is defined as,

Q∗(s, a) = max
π

Qπ(s, a) (2.7)

= R(s, a) + γ
∑

s′∈ �
P(s, a, s′) max

a′∈
� Q∗(s′, a′). (2.8)

for all s ∈ S, a ∈ A. Given the optimal action-value function, the action that maximises the
expected total reward from state s is,

a∗ = arg max
a∈

� Q∗(s, a).

It can be shown that a policy π that selects action a∗ with probability 1, for all s ∈ S, is an
optimal policy.

Algorithms that find the optimal policy can be broadly classified into model-based, where a
transition model is known, and model-free, where the transition model can be assumed to exist,
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but is unknown. In this work, the focus is on model-free approaches, and specifically on Monte
Carlo methods and Sarsa, which are discussed in the following sections.

Model-based algorithms such as Policy Iteration and Value Iteration have been proven to
always converge on the optimal solution [118, page 97]. Policy Iteration works by starting with
an arbitrary policy π and then finding the associated values V π. This phase is referred to as
policy evaluation and is done iteratively by applying the update rule,

Vk+1(s)←
∑

a∈
�

π(s, a)
∑

s′∈ �
P(s, a, s′)

[

R(s, a, s′) + γVk(s′)
]

,

for all s ∈ S, until Vk+1 is sufficiently close to Vk. This update rule is essentially an algorithmic
form of the Bellman equation for V π (2.3). Policy evaluation is followed by policy improvement
which is based on the observation that a policy π ′ that is greedy with respect to V π will always
be better than or equal to π. A policy is greedy with respect to V π when it selects the action
that maximises the expected reward according to V π. Also, when π′ is equal to π, then π is
optimal. The algorithm repeats the two phases until the policy stabilises. Note that the choice
of initial policy used for π cannot prevent the optimal solution from being found, however a
better choice of initial policy may reduce the number of iterations required.

2.4.4 Monte Carlo Methods

Monte Carlo approaches seek to make an estimate of the value of a state by taking a series of
random samples. There are several variations on the Monte Carlo theme, but the basic algorithm
is to pick a random start state, then to execute a fixed policy until the episode terminates. When
the episode terminates, it is then possible to work back through the sequence of states and update
each value estimate based on the total reward received and how much reward had been received
up to that point. Singh and Sutton [107] show that it is important to only update on the basis
of the first visit to a particular state. If this is not done, the value estimate will be biased.

This work makes use of two particular Monte Carlo variants. The first, referred to by Sutton
and Barto [118] as Monte Carlo ES, for Monte Carlo with Exploring Starts, only explores
during the first step of an episode. It does this by randomly generating the first action taken.
It subsequently follows a greedy policy. In this case, a greedy policy is one that maximises the
expected reward with respect to the estimate of the action-value Q(s, a). The full algorithm is
summarised as algorithm 2 on the next page.

This algorithm is based on generating an episode according to the current policy π. The
initial state is selected at random, and the first action is also selected at random. During
the episode, it is necessary to keep track of the states visited, actions tried and also the reward
experienced. The value for any particular state-action pair corresponds to the discounted reward
received for the rest of the trial. This is the same as the total reward received over the whole
episode Q0 less the discounted reward received so far r. Note that it is necessary to ignore repeat
visits to the same state-action pair. For stochastic environments, a number of samples will be
required before the correct state-action pair value (or action-value) is arrived at. These samples
are averaged, and in the form of the algorithm shown here, a running average is kept. Once the
action-value estimates Q(s, a) have been updated, the policy is revised where necessary so that
for any state that was visited, the action corresponding to the largest action-value is selected.

A potential problem with the Monte Carlo ES variant is that it only explores new actions at
the start of the episode. This can be a problem if the initial state is not randomly chosen from
the full set of possible states. In addition, Monte Carlo ES assumes that episodes are proper [118,
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1. (Initialise policy arbitrarily.) π(s) ← arbitrary, Q(s, a) ← arbitrary, N(s, a) = 0 ∀s ∈
S, a ∈ A

2. Repeat forever:

(a) select s, a randomly

(b) r ← 0, R←empty list

(c) (Generate an episode.) While s is non-terminal

i. Append (s, a, r) to R if first visit to s, a this episode

ii. (Observe next state.) s
a
→ s′

iii. (Track total reward so far.) r ← γr + R(s, a, s′)

iv. (Assign action based on current policy.) s← s′, a← π(s)

(d) (Store the value of whole episode.) Q0 ← r

Q0 is the value of the episode starting from the first, randomly selected state-action
pair.

(e) For each (s, a, r) in R:

i. (Update the average value recorded for the state-action pair.)

Q(s, a)←
Q(s, a)N(s, a) + (Q0 − r)

N(s, a) + 1

ii. (Increment the number of visits to this state-action pair.)

N(s, a)← N(s, a) + 1

(f) For each s in R:

i. (Update policy so that it is greedy with respect to the action-value.)

π(s)← arg max
a∈

� Q(s, a).

Algorithm 2: mces: Monte Carlo ES
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page 111], that is, all episodes eventually reach a terminal state regardless of the initial state
and actions taken.

A variant that allows occasional exploration is the Monte Carlo ε-soft On Policy algorithm,
shown here as algorithm 3 on the following page. Instead of using a greedy policy, it “softens”
the policy by making the probability of selecting the greedy action slightly less than 1. In this
algorithm, ε refers to the probability with which a random action will be chosen rather than the
greedy action. This algorithm is referred to as an “on-policy” variant since it uses the policy
that it evaluates.

A strength of Monte Carlo methods is the complete evaluation of an episode prior to updating
the estimated action-values. It is also a weakness since it means that the policy does not change
until the episode terminates.

2.4.5 Representing Continuous State Spaces

A difficulty when attempting to apply MDP-based algorithms to real world robotic control
problems is that Markov Decision Processes have a finite number of states, whereas the state of
the real world is more naturally represented using continuous values. There are two approaches
to resolving this dilemma. The first is simply to ignore it, and to define a finite number of
states that each correspond to regions within the state space. This was used by Mahadevan
and Connell [88] who encoded the state as a sequence of bits. For example, two bits were
reserved for the distance associated with each sonar reading depending on whether the reading
indicated a near or far object. Once the state space has been converted into a finite set, tabular
reinforcement learning algorithms can be applied. Here the term tabular is used to refer to
algorithms that store the action-value for a state in some form of table or array.

An alternative is to not represent individual states directly, but rather define a smooth
function that returns the utility value given a state or state-action pair. This approach is termed
function approximation. In general, a number of machine learning approaches, such as neural
networks or genetic algorithms, can be used for function approximation. This thesis focuses on
the use of a linear function for function approximation of the general form,

Qt(s, a) = ~θT .~φsa =
n

∑

i=1

θt(i)φsa(i). (2.9)

Here, Qt(s, a) is the estimate at time t of the value of the state-action pair s, a. The vector
~φsa corresponds to the combined vector of features seen in s, a. This vector can usually be
divided into a set of state features and a set of action features. The vector ~θt contains the set
of parameters at time t, which are adjusted to attempt to improve the approximation. The
aim is to minimise the mean squared error (MSE) between the approximator and the function
being approximated, with respect to a probability distribution over all states. The probability
distribution weights the mean so that those states that are more likely to be seen in the real
environment are weighted more heavily than those that occur less frequently. In reinforcement
learning, this weighting is performed by sampling from complete episodes, and by ensuring that
the start state is sampled realistically.

Gradient descent is used to minimise the MSE. The basic approach is to update the parameter
vector based on the gradient of the action value function, or,

~θt+1 = ~θt + α [qt −Qt(st, at)]∇~θt
Qt(st, at), (2.10)
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1. (Initialise policy arbitrarily.) π(s) ← arbitrary, Q(s, a) ← arbitrary, N(s, a) = 0 ∀s ∈
S, a ∈ A

2. Repeat forever:

(a) select s randomly

(b) r ← 0, R←empty list

(c) (Generate an episode.) While s is non-terminal

i. (Select action.) a←

{

π(s) Pr(1− ε)
random Pr(ε)

ii. Append (s, a, r) to R if first visit to s, a this episode

iii. (Observe next state.) s
a
→ s′

iv. (Track total reward so far.) r ← γr + R(s, a, s′)

v. s← s′

(d) (Store the value of whole episode.) Q0 ← r

Q0 is the value of the episode starting from the first, randomly selected state-action
pair.

(e) For each (s, a, r) in R:

i. (Update the average value recorded for the state-action pair.)

Q(s, a)←
Q(s, a)N(s, a) + (Q0 − r)

N(s, a) + 1

ii. (Increment the number of visits to this state-action pair.)

N(s, a)← N(s, a) + 1

(f) For each s in R:

i. (Update policy so that it is greedy with respect to the action-value.)

π(s)← arg max
a∈

� Q(s, a).

Algorithm 3: mcsoft : Monte Carlo ε-soft On Policy
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where α is the learning rate, and qt is the experienced return. Given (2.9), the gradient of the
action-value function is simply,

∇~θt
Qt(s, a) = ~φsa, (2.11)

and this leads to a straightforward update.
Santamaŕıa et al. [104] demonstrated that certain “skewing” transformations of the sensor

data prior to using a function approximator could improve learning rates, and also benefited the
final performance. The advantage of performing such transformations is that more resolution
can be applied to areas of the state space that are of greater relevance to the problem, or where
the gradient of the action-value function is larger.

2.4.5.1 CMAC or Tile Coding

A function approximation method that is commonly used in conjunction with reinforcement
learning is the Cerebellar Model Articulation Controller or CMAC. In the original description
of this technique by Albus [4, 3], the CMAC was intended to be a model for the mammalian
cerebellum, and the overall system used to control a manipulator. A CMAC is an adaptive
approach that allows for control functions with many degrees of freedom. Sutton and Barto [118]
use the term tile coding to refer to the form of CMAC typically used in reinforcement learning.
In being applied to reinforcement learning, a tile coding maps a state vector to an action-value
rather than an action, and so the mapping needs to be queried for each possible action to
determine the action that produces the greatest action value.

In its simplest form, tile coding is a grid dividing up some space, so that each point in that
space corresponds to a “tile” or grid reference. Each tile has a corresponding weight. This weight
corresponds to the value that the point maps to. To increase the resolution of the mapping,
either the resolution of the grid can be increased, or additional grids can be added, offset from
each other and from the initial grid. When multiple grids are used, the sum of the weights of
each relevant tile are used to produce the value. An example tile coding with three grids is shown
in figure 2.5 on the next page. The state being queried is shown as a small dot. The relevant
tiles are the tiles from each grid that overlap the state. This diagram shows the situation for
a two dimensional state vector, however the approach generalises to any number of dimensions.
Sutton and Barto [118, page 206] point out that the offsets of each grid should be randomly
chosen.

Tile coding is a form of binary feature encoding of the state-action pair. That is, it maps
the state-action pair to a vector of binary numbers. Given that each tile weight corresponds to
the parameter θt(i), if a state-action touches that tile, then φsa(i) = 1. Conversely, φsa(i) = 0 if
the state-action does not touch. This can also be expressed as the feature set,

Fsa = {i : φsa(i) = 1} . (2.12)

Since the set Fsa always has exactly one element per tiling grid, it can be represented as an
array of indexes to tiles that touch s, a.

2.4.6 Sarsa

Sarsa(λ) [103, 118] takes its name from the state, action, reward, state, action sequence. λ
refers to the use of an eligibility trace, and is actually the decay factor used. Sarsa is a variant
of Temporal Difference Learning or TD(λ) [115, 116] that is appropriate for control problems.
This thesis makes use of a combination of Sarsa(λ) and tile coding function approximation. The
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Figure 2.5: An example of tile coding. In this case, three grids or “tilings” are used, shown by
the solid line, long dashed line and short dashed line. The shaded areas are three overlapping
tiles.
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algorithm is formally referred to by Sutton and Barto [118] as linear, gradient-descent Sarsa(λ)
with binary features and an ε-greedy policy. It is reproduced here as algorithm 4 on the following
page. The variant shown here has replacing traces, which means that when a state-action pair
is visited, the corresponding eligibility trace is set to 1. The conventional approach has been
to use accumulating traces, which increment the eligibility by 1 each visit, however Singh and
Sutton [107] have shown that this produces bias in TD(λ) and a greater mean-squared error in
the long term.

Like Monte Carlo ES and MC ε-soft on-policy, Sarsa(λ) is an on-policy technique. That
is, the policy being followed is the one being evaluated. In comparison, off-policy algorithms
evaluate one policy while following another. In the form of Sarsa(λ) shown as algorithm 4, an
optional loop is included, 2(f)ii, that zeros the eligibility for any feature that corresponds to an
action not taken from this state. Also, the recalculation of Qs(a) that is performed at the end
of the loop at line 2(f)xii was not included in the experimental work performed in this thesis.
This line is taken from the errata provided by Sutton and Barto for their book [118], but they
note that leaving it out has only minor effect.

The eligibility trace, denoted ~e, is a vector that tracks the eligibility of a weight to receive
credit. This mechanism allows adjustments to the estimate of an action-value to apply not
simply to the current state-action pair, but also, usually to a lesser extent, to other action-value
pairs visited recently. A key factor in the use of an eligibility trace is the decay of eligibility
λ. When λ = 0, no credit is assigned to past state-action pairs, whereas when λ = 1 credit is
assigned equally to all previously visited states.

Sutton and Barto [118, page 207] note several modifications to the basic algorithm that
can be made when implementing Sarsa(λ) with tile coding. One is to use hashing to reduce the
dimensionality of the state space. Another improvement is to use sparse coding for the eligibility
trace. This is particularly useful when episodes are short and the number of weights large [118,
page 189]. This latter point is also mentioned by Stone and Sutton [110]. In addition, Stone
and Sutton also mention the “trick” of ignoring some dimensions in some of the tilings as a way
of reducing the total number of tiles.

2.4.7 Convergence Results for Reinforcement Learning

A number of reinforcement learning algorithms are guaranteed to converge to an optimal solu-
tion, in the same way that Value Iteration does, when the states and actions are finite, and the
action-value function can be represented by a look-up table. Recently, Singh et al. [106] have
proven convergence for tabular Sarsa(0). (Sarsa(0) is simply Sarsa(λ) with λ = 0.) A notable
exception is Monte Carlo ES, for which there is no convergence proof as yet [117]. This is sur-
prising as this is one of the simplest model-free approaches and seems one of the most likely to
converge as it avoids bootstrapping from estimates of action-values and only uses experienced
action-values.

Tsitsiklis and Van Roy [120] have shown that TD(λ) with a function approximator will
converge to the optimal solution provided that a linear approximator is used and that an “on-
policy” approach [118] is used. They point out that their proof does not extend to non-linear
function approximators and give an example where the algorithm will produce increasingly
divergent values.

This is in contrast to Baird’s counterexample [13], which demonstrated that, even where
linear function approximation was used, an off-policy reinforcement learning algorithm may not
converge to the optimal, and may even diverge. Baird proposed a set of variants to the standard
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1. Initialise ~θ arbitrarily

2. Repeat (for each episode):

(a) Initialise ~e = ~0

(b) s← initial state of episode

(c) For all a ∈ A

i. Fsa ← set of features present in s, a

ii. Qs(a)←
∑

i∈ � sa
θ(i)

(d) a← arg maxa Qs(a)

(e) With probability ε: a← a random action ∈ A

(f) Repeat (for each step of episode) until s′ is terminal:

i. ~e← γλ~e

ii. For all ā 6= a :

A. For all i ∈ Fsā: e(i)← 0

iii. For all i ∈ Fsa:

A. e(i)← 1 (replacing traces)

iv. Take action a, observe reward r and next state s′

v. δ ← r −Qs(a)

vi. For all a ∈ A:

A. Fs′a ← set of features present in s′, a

B. Qs(a)←
∑

i∈ � s′a
θ(i)

vii. a′ ← arg maxa Qs(a)

viii. With probability ε: a′ ← a random action ∈ A

ix. δ ← δ + γQs(a
′)

x. ~θ← ~θ + αδ~e

xi. a← a′, s← s′

xii. Qs(a)←
∑

i∈ � sa
θ(i)

Algorithm 4: sarsa: Linear, gradient descent Sarsa(λ) with binary features and replacing
traces.
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algorithms, called residual algorithms, that avoid this problem.

Sutton [117] notes that although linear Sarsa(λ) seems to perform well in many cases, there is
a tendency for it to “chatter” or oscillate rather than converge. Gordon [50] found that Sarsa(0)
converges to a region. That is, although Sarsa(0) may be subject to an oscillation, this is the
worst case, and it does not diverge from this. Gordon points out that this bound may not be of
immediate practical use since the bound may not be small enough to ensure that the state-action
values are correct or even nearly correct.

2.4.8 Dealing with Partially Observable Environments

An important assumption for Markov Decision Processes is that the environment is fully ob-
servable. That is, the state of the world is completely accessible and does not contain hidden
elements. Complete accessibility is rarely the case in real world environments, however. Robots
are often subject to perceptual aliasing, where current sensory information is insufficient to
clearly identify the current state. An interesting characteristic of environments that contain
hidden elements is that the optimal policy often involves taking action to obtain information.
For example, in robot soccer, a robot might need to move in order to see if the ball is hidden
behind another robot. An extension of the MDP model to such environments, that allows the
information gathering value of actions to be taken into account, is the POMDP or Partially
Observable MDP.

In a POMDP, the state may not be known unambiguously, but past history may allow belief
distributions over all possible states to be calculated. According to Blondel and Tsitsiklis [21],
a finite-horizon POMDP can be converted into a fully observed MDP, but the complexity of the
problem is PSPACE-complete. The situation is even worse for infinite horizon problems, which
on conversion to MDPs have infinite states and are, in fact, undecidable [21].

When solving finite-horizon POMDP problems, the POMDP is first converted into a fully
observed MDP by mapping each possible belief distribution over the set of states to a fully ob-
served state in the MDP. There may, however, be a large number of possible belief distributions.
Cassandra et al. [31] realised that some of the possible distributions were more important than
others, and that many belief distributions could be considered to be the same as they would
lead to the same action being taken. They devised the Witness algorithm to cluster similar
belief distributions and applied it to several simple problems. The simplification of grouping
together distributions allows POMDPs to be solved in polynomial time but as a consequence
of the simplification, the solution may be slightly less than optimal in some cases. Also, even
if this approach can be considered tractable, it is not typically feasible to apply it to problems
where there are more than about 15 states [66].

Littman et al. [78] managed to increase the number of states slightly to around 100, however
this is still much smaller than most realistic problems. Kaelbling et al. [66] realised that it would
be possible to develop controllers for POMDP problems off-line using a simulation. Koenig and
Simmons [71] made use of this approach to develop a POMDP navigation mechanism for a
robot in an office environment. They allowed a small set of actions: turn left 90 degrees, turn
right 90 degrees or move forward one metre. The POMDP allowed the robot to track the belief
distributions over possible poses in an environment where many situations look the same to the
robot.

POMDP navigation is somewhat similar to Markov Localisation [46], except that the
POMDP is used for control as well as tracking the most probable pose. This is important
as the POMDP will tend to favour actions that help to identify the state. On the other hand,
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experimental work with Markov Localisation by Fox et al. [47, 46] shows that state disambigua-
tion tends to occur quite quickly as the robot moves around. Recent work has extended this
approach by using a Monte Carlo approach to reduce the overhead of computing the updated
belief distribution. This new approach is termed Monte Carlo Localisation or MCL [119, 44].

Quite a different approach to the issue of control in partially observable environments was
taken by Lanzi [74]. Lanzi’s approach is to include a set of internal memory registers that can
be altered by the agent. These registers also form part of the state and are intended to help the
agent in disambiguating states that otherwise appear to be the same. Part of the task being
learnt then includes decisions about when to write to registers and what to write there. A
difficulty with this approach is that the Markov Property does not necessarily hold during the
learning process.

2.4.9 State Estimation

If it is not feasible to develop a control method to deal with a partially observable environment,
a compromise is to make improvements in the estimate of the state of the world. Behaviour-
based systems have usually taken the approach that the “world is its own best model” [28],
and only made use of current sensor information when deciding what to do. However robotic
sensors are notoriously unreliable and if taken at face value can cause robot behaviours to
behave poorly. When the whole history of a sensor’s value is examined, it is often possible to
deduce more information than that available from the current value alone. Note that it is not
always necessary to keep the entire history but sometimes just a summary of it. In addition,
information from different sensors can be combined or “fused” to form a more reliable estimate
than the sensors provide individually.

Given that individual sensors are sometimes unreliable, and that sensor values may need
to be combined with other sensor values or historical information, it is often useful to provide
behaviours with a processed form of the sensor data. This form is often referred to as a world
model.

A number of different approaches have been taken to improve the quality of data received
into the world model [1, 52, 54, 60, 124, 125]. For example, various forms of Kalman Filters have
been used for improving the quality of vision-based data [36, 54]. The CS-Freiburg team made
use of laser range-finders to develop an accurate form of localisation called scan-matching [53].
This tries to match up a scan with what is known about the shape of the room. Monte Carlo
Localisation has also been used in RoboCup to improve vision-based position information [1]. Fi-
nally, teams of robots have shared information amongst team members to sense the environment
cooperatively [36, 60].

2.4.10 Hierarchical Approaches

It has been shown that the optimal solution to an infinite-horizon, discounted MDP problem can
be found using linear programming, and therefore the problem can be considered to have polyno-
mial complexity, and in fact is P-complete, in terms of the number of states and actions [21, 79].
Unfortunately, many real-world and even some simulated problems have extremely large state
spaces, and it is often impractical to solve them directly because of this. For example, Riedmiller
et al. [102] note that the state space for the RoboCup simulation league is at least (108× 50)23

in magnitude if position is considered alone. The large number of action variants possible mean
that, in each decision cycle, the team’s action space has a magnitude of 30011.
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A strategy that can be used to deal with such large state spaces is to decompose the larger
problem into a hierarchy of learning problems [37, 55, 56, 68, 101, 105, 129]. A general form of
this hierarchy is a simplified behaviour-based architecture termed gated behaviours [67] where
only a single behaviour is active as determined by a gating function. The basic approach is to
first learn the behaviours and then learn the gating function. There have also been a number
of variations on this approach, either fixing the gating function and learning the behaviours or
predefining the behaviours and learning the gating function.

Hengst [56] gives the example of a robot moving through a set of interjoining offices. In
this example, the problem can be divided into the high level task of working out which office to
move to next in order to get to the correct room, and the low level task of working out how to
move within the room to reach the correct exit. Hengst presents the CQ algorithm that uses
the ordering of the state vector to work out how to break the problem into layers. In the above
example, the first element of the state vector is the room number, while subsequent parts of the
vector represent the position in each room. Since the room number comes first, this is used for
the upper layer of the hierarchy, while the position in the room corresponds to the lower layer.
This is a straightforward approach but it depends heavily on the dimensions chosen for the state
space to achieve a good breakdown of the task.

Wiering and Schmidhuber [129] developed HQ-Learning, which attempts to solve POMDPs
using a hierarchical approach. Their insight was to realise that within a task that must be
considered partially observable as a whole, there tend to exist sub-tasks that can be performed
entirely reactively. Their approach breaks down the larger task into these sub-tasks by learning
to identify sub-goal states. HQ-Learning is well suited to problems where the agent needs to
solve a series of sub-tasks such as moving through a series of rooms. It also extends existing
hierarchical approaches to partially observable problems.

Sun and Peterson [114] developed an algorithm that automatically partitions the state space
for a reinforcement learning problem by using multiple agents. Each agent is assigned its own
region, initially starting with one agent that is assigned the whole of the problem space. Parti-
tioning is performed along one dimension of the state space at a time, based on which various
heuristics to do with the Bellman residuals received for that region during reinforcement learning
so far. In comparison to HQ-Learning, their algorithm does not require sub-goals to be reached
for the task to be handed over. Although they state that there is no dependency on a priori
information, the effect of dividing regions along one dimension at a time will depend on what
dimensions are chosen, just as it does for the CQ algorithm.

In summary, there are a number of promising approaches for automatically, or semi-
automatically dividing up large reinforcement learning problems into a number of smaller prob-
lems. These approaches tend to focus on the solvability of the sub-task, rather than whether
the overall solution is optimal.

2.5 Robotic Applications of Reinforcement Learning

Robotic problems are a natural application of reinforcement learning algorithms, and this is
exemplified by the frequent use of robot problems to illustrate theories about reinforcement
learning.

Belker et al. [17] have developed navigation plan execution policies using an MDP-based
approach. The main aim of their approach is to provide a low-level reactive policy that works
well with a high-level path planner. To do this, the state representation of the MDP includes
the robot’s position and remaining intermediate destinations provided by the path planner.
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In addition, it contains features for such things as minimal clearance between the robot and
obstacles. The reward function is“shaped”by rewarding actions that get closer to the destination
rather than only providing a reward when the robot reaches it.

Kalmár et al. [68] have examined a number of different reinforcement learning algorithms
in the context of a module-based approach. The task is first divided up into sub-tasks, then
controllers for each of these sub-tasks are learnt, and finally a coordination controller or sequenc-
ing layer is learnt. The approach is evaluated using a realistic task on a Khepera robot [98].
In the example task, the state is only partially observable. For example, one of the sub-tasks
involves finding the ball. In a fully observable domain, such a task would not be required;
the ball’s position would already be known. Two types of reinforcement algorithm are tried:
model-based and model-free. The model-based algorithms gradually improve estimates of the
transition probabilities and the value of each state, rather than estimating the action-value for
each state-action pair. The reward function is also estimated rather than being supplied a pri-
ori. The model-free algorithm used was Q-learning [127]. Their work focuses on the problem
of learning the coordination controller. For this, the model-based algorithms were found to be
significantly better than the model-free ones, and were on a par with hand-crafted algorithms.
The state is determined by seven binary features, yielding a state space of 128. Some behaviours
are only relevant during some states, thus reducing the problem further. The authors do not
state how the behaviours were developed and they may have been hand-crafted.

Asada et al. [11, 9, 10, 12] have examined the use of Q-learning to develop a shooting
behaviour for a mobile soccer robot. The main characteristic of the work is the development of
a state-space that is defined in terms of qualitative attributes, such as the ball being near or
far, or the goal being to the left or right. This approach reduces the state space to about 300
different states. However, a problem with this approach is that there is considerable perceptual
aliasing, since many different situations map to the same state signal. A POMDP approach for
this problem would be impractical as the best results so far have worked with only a dozen or
so observations [66]. Since the state does not always change quickly, one approach tried [10] was
to continue to take an action until the state changed. A decay factor γ < 1 is used to encourage
learning how to perform the task more rapidly.

Uchibe et al. [121] developed a modular reinforcement learning approach that combines
state-action values learnt for different sub-tasks, such as shooting or avoiding an obstacle. The
modular approach is designed to assist in quickly learning a large scale problem and is based on
previous work by the same authors [12]. Hidden states, or in other words, situations where the
signal does not unambiguously identify the state, are detected using statistical analysis. The
approach is tested using computer simulation and also real robot experiments.

2.5.1 Reinforcement Learning Applied to Behaviour-Based Systems

The application of reinforcement learning to behaviour-based robots has been investigated by a
number of researchers [58, 88, 93, 94, 97]. Some have focused on learning individual behaviours,
while others provided the behaviours, and learnt their coordination.

Mahadevan and Connell [88] provided one of the first attempts at applying reinforcement
learning to behaviour-based robots. The task was for the robot, called obelix, to push a box
across the room. This involved three behaviours: finder, pusher, and unwedger. The selection of
which behaviour to execute was determined by a hard-coded state machine. obelix used sonar
to sense the state of its environment, however it could not sense it completely. Mahadevan and
Connell reduced the information provided by the sonar array to 18 bits. This allowed 218 or
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262 144 possible states. They tried two approaches to reduce the complexity of the problem.
The first was to reduce the state representation to 9 bits, thus reducing the number of states to
512. The other was to keep all 18 bits, but to cluster some states statistically. They found that
statistical clustering produced behaviours with better performance. The best learnt behaviours
were comparable in terms of performance with hand-crafted behaviours. They point out that
18 bits is a dramatic reduction on the actual state information available to the robot, and that
the number of possible actions is also substantially reduced.

Hoar et al. [58, 130] reexamined Mahadevan and Connell’s experiment with a smaller robot,
appropriately1 called asterix. In their work, they found that perceptual aliasing and latency,
in conjunction with the design of the reward function, produced some unexpected behaviours.
Rather than developing a box pusher and wall avoider, the behaviours tended toward box avoider
and wall pusher. One possible explanation for avoiding boxes is that the reward for pushing a
box is outweighed by the possibility that the detected box is really a wall, and by the cost of
becoming wedged against a wall. In addition, sensor latency causes the robot to be rewarded
slightly while pushing a wall as the sensors indicate that the robot is still moving for a short
period after the robot has stopped.

As a result, Hoar et al. recommend using both internal and external evaluation of the devel-
oped behaviours where the sensors are unreliable. They note that appropriate reward functions
are hard to design and that some additional metric must be used to determine whether or not
the correct behaviour has been produced by the learning process. They suggest using either an
external quantitative metric, where the sensors may be unreliable, and a qualitative assessment
in order to identify differences between the desired behaviour and that which was rewarded by
the reward function. They also note that it is important for the Markov assumption to hold, if
the reinforcement learning algorithms are to be applied.

Matarić [94] applied reinforcement learning to a multi-robot foraging task. The task involved
a set of robots searching for, then picking up pucks, returning to a home area and depositing the
pucks. The robots were given a number of fixed behaviours, such as safe-wandering, and homing,
and attempted to learn how to switch between these behaviours based on a set of predicates,
such as have-puck?, and at-home? Each robot learnt the problem separately using a modified
form of Q-learning. For each robot, the learning problem consisted of 16 states and 4 actions.
Matarić found that the style of reinforcement strategy had a significant effect on what could be
learnt by the robots within a reasonable amount of time. To learn the policy correctly it was
necessary not only to reinforce correct foraging behaviour, but also to provide reinforcement for
increasing the distance from other robots, for moving towards the home base when a puck is
held, and for moving away from the home base when nothing is held. Matarić terms these extra
hints shaped reinforcement . Although, shaped reinforcement has the potential for introducing
programmer bias, it can simplify the learning problem sufficiently that it can be learnt in a
reasonable time.

Millán [97] developed a system called teseo that used an Actor-Critic system to learn a
simple navigation task. To ensure that the robot operates safely, teseo uses a fixed set of basic
reflexes in a subsumption style architecture, as a starting point for learning the task. These are
used when there are no reaction rules learnt yet for the observed state or when the learnt rules
are performing badly. teseo attempts to learn the whole task, rather than individual behaviour
modules, and, as Millán states, this makes it difficult to generalise to other situations or other
tasks. It is similar in the way that behaviours are used as a starting point for the learning

1Asterix and Obelix are characters from a series of comic books by Goscinny and Uderzo. Asterix is a short,

small character, while Obelix is large and fat.
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process, both as way of reducing the total time to learn the task, and to improve the robustness
of the behaviour during the early stages of learning.

Baltes and Lin [16] used reinforcement learning under simulation to learn a controller for a
toy car on a race track. The car itself has no feedback mechanism, but its motion is tracked
by an overhead camera. The aim is for the car to stay on the track and to complete a certain
number of laps in the minimum time. It is modelled as a Dubins car, the optimal paths for which,
according to Balluchi et al. [15], were originally analysed by Dubins [39]. The main restrictions
for a Dubins car are that it has a fixed minimum turning radius and can only move forward. It
should be noted that the optimisation provided by Dubins was in terms of minimising the path
length. The resulting paths always consist of a combination of minimum radius circle arcs and
line segments.

The controller developed by Baltes and Lin used an input feature vector (ỹ, θ̃, R)T where
ỹ is the perpendicular distance from the desired path to the robot, θ̃ is the angular error in
the heading and R is the radius of curvature of the path. The forward speed of the robot is
fixed, and control is in terms of steering only. Reward is defined in terms of the negative of
a weighted sum of the position and orientation errors plus an additional cost for adjusting the
steering. Including a steering cost is intended to encourage smoother control. Rather than use
a discretised state space, a case-based function approximator maps the state-action space to the
action-value function. The controller was developed under simulation and then used on a real
robot. Although learning was continued, Baltes and Lin reported no noticeable improvement
in performance due to less exploration and due to the much larger number of training cycles
performed under simulation. Their results were that the developed controller was comparable
in performance to the best hand-coded controller developed so far.

Balch [14] developed an environment for integrating motor schemas and reinforcement learn-
ing called Clay. Balch’s approach is a many layered hierarchical approach with the primitives
corresponding to a set of predefined but parameterised motor schemas. These were used to
solve team problems, such as simulated robot soccer and foraging tasks. Balch found that in
most cases the learnt systems were comparable with the hand-coded ones, with one exception
that was better. Balch also examined a number of other aspects of team problems, and focused
particularly on the issue of diversity.

2.6 Other Approaches to Learning Behaviours

Robot behaviours have been learnt using a number of different approaches other than reinforce-
ment learning.

Maes and Brooks [87] used a learning approach similar to reinforcement learning to teach
a 6 legged robot, called Genghis, to walk. Learning was based on a combination of negative
feedback, when the robot rests on its body, and positive feedback, when forward motion is
detected by a wheel trailing behind the robot. Genghis successfully learnt a tripod gait that
kept the body up and moved the robot forward. Interestingly, the algorithm used did not
attempt to resolve the temporal credit assignment problem. That is, if a reward related to an
action that occurred in the past, the algorithm would not attribute any portion of the reward to
the original action. In this case, the rewards and punishments are immediate and so the problem
of correctly assigning credit to past actions did not seem to occur.

Dorigo and Colombetti [38] developed a learning classifier system called alecsys. alecsys

is similar to a behaviour-based system, in that it involves a set of production rules that map state
to action, and a conflict resolution mechanism. alecsys also differentiates between internal and
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external messages and has an auction system for determining which messages are transmitted
internally. New production rules are discovered using genetic algorithms, while rule strength is
governed by an “apportionment of credit” system. A key finding was that learning was improved
by using a reinforcement producing program, or RP, to “shape” the learning. The authors also
provided a methodology for analysing and creating behaviours.

Genetic algorithms and other evolutionary approaches have been used widely to learn robot
tasks [20, 42]. Floreano and Mondada [42] used genetic algorithms to learn a neural network
that controlled a Khepera robot [98] navigating and avoiding obstacles. They also used genetic
algorithms to learn a neural network for homing to a recharging area. To avoid the problem of
having to wait for batteries to recharge, the robot was tethered to a power supply in a way that
allowed it to move freely, thus allowing the genetic learning process to run continuously over 10
days. A “helmet” was used to allow a laser tracking system to be used to provide an external
reference for the movement of the robot.

A similar approach was used by Hornby et al. [59] to develop a fast gait for the Sony AIBO
robot. As with Floreano and Mondada’s work [42], the gait was learnt on a real robot. In
this case, a limited set of gait parameters were learnt, rather than attempting to learn a neural
network controller. The robot was tethered and motion was evolved over 500 generations, which
took 25 hours in total. Hornby et al. discovered that a gait learnt on a single robot was better at
generalising to other robots if the gait was learnt on a ridged carpet. Ridging forces the gait to
lift the feet higher to be successful and thus made the gait more robust when the characteristics
of the robot changed slightly.

Blair and Sklar [19, 20] used evolutionary learning to develop a controller to play a simulated
ice hockey game called Shock. The evolved controller is in the form of a neural network and
the process of evolution learns the weights for the network. The game involves two players
that each attempt to knock a puck into the opponent’s goal, however learning was done with a
single player attempting to shoot at an open goal. This has the advantage that it reduces the
state space considerably—the controller does not need to change its actions depending on the
position of the opponent. Several forms of neural networks were tried, all with 12 inputs and
4 outputs. The inputs were in terms of the global position and estimated velocity of the puck
and player, as though an overhead camera existed [19]. A later enhancement [20] used local
Braitenburg-style [6] sensors that gave information about distance and rough direction of the
various object types relative to the position of the player. Several hundred thousand simulated
trials were used to develop a controller. There was no aim to transfer the controller to a real
robot as the target environment was a simulated one.

Maire and Taylor [90] used a mathematical model of the robot and its environment to develop
a behaviour to cause the robot to intercept and kick a moving ball. They provide as input the
position and velocity vectors of the ball and the robot, and also include the number of time
steps before desired interception. The output is an acceleration vector for the next time step.
The system is formulated as a quadratic programming problem; that is, the problem of finding
the minima of a quadratic function that conforms to a system of linear inequalities. Two neural
networks are then used; one to learn the solution to the quadratic programming problem, and
the other to learn to predict the time to interception.

Maaref and Barret [81] dealt with the problem of navigating in a partially known environ-
ment. They point out that rules based on human expertise may be sub-optimal and therefore it
may be better to generate the rules automatically. They use a back-propagation-like mechanism
to learn the rules of a fuzzy inference system. The aim of the learning process is to minimise a
cost function. Since the environment is partially known, an A∗ planner is used to globally plan
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the route, while low-level fuzzy logic rules deal with navigating between the intermediary points
of the planned route, and avoiding unexpected obstacles.

Stone and Veloso [112, 113] have done much work in the context of learning behaviours for
the simulation RoboCup league. One approach made use of decision trees to distinguish between
situations that were better for passing or shooting in the context of the RoboCup simulation
league. An approach called Layered Learning [108] was used to develop the behaviours. First a
neural network was trained to perform ball-interception. Next, a decision tree was used to learn
the likelihood that, once the ball has been intercepted, a pass might succeed. Any particular
player only tries to intercept the ball when it perceives that it is the nearest. Once it reaches
the ball, the decision tree is used to decide what to do with it. It can either shoot at the goal,
dribble, or pass to another player.

Stone et al. [111] have applied reinforcement learning to a sub-problem in simulated robot
soccer, called “3 vs. 2 keepaway”. The simulator used is the standard simulator for the RoboCup
simulator league competition. The sub-problem involves 3 forward players with possession of
the ball, and 2 defenders. The forwards need to keep the ball from the defenders by running to
the ball, then holding the ball, or passing it. The defenders on the other hand, must tackle the
robot with the ball. However, it is not useful for both defenders to try to do this, one or the
other could be blocking a pass. In this case, the low-level behaviours are already provided. What
is learnt is the coordination of when these behaviours should be active. TD learning is applied
and is able to generate a policy that is significantly better than could be easily hand-crafted.

2.7 Simulation

The trend for behaviour-based roboticists is to avoid simulation. Brooks [29] argues, in the
context of genetic programming, that there are inherent problems with transferring a program
evolved under a simulated environment to a real robot. One such problem is that without regular
validation on a real robot, there is the danger that much effort will be spent solving problems
that only occur in simulation. Conversely, Brooks argues that programs that work well under
simulation are likely to fail in the real world because simulating the actual dynamics of the real
world is hard to do. Another issue is that of calibration. Robots that are supposedly the same,
may be quite different. Behaviours may need to be tuned to work with each individual robot,
and to do this, some mechanism is required to allow calibration. Finally, Brooks concludes that
there are methodological problems with using simulations to test programs that are eventually to
be used on real robots, and a need for careful validation procedures that counter these concerns.
More recently, Brooks [24] has argued for more work involving physical robots with sensors and
actuators operating in a physical world, while pointing out that most research is conducted using
simulation, and that simulation rarely accounts for realistic physical effects.

However, Jakobi [63] has shown that simulators can be used successfully to generate neural
network controllers using evolutionary algorithms. Such algorithms typically require thousands
or even millions of epochs to find a near-optimal controller, so simulation is the only feasible
approach. As Jakobi points out, even if sufficient resources and time existed to run millions of
epochs on a real robot, the robot itself would wear out or at least its physical characteristics
would change before much could be learnt.

In addition, Jakobi analyses what is required for a simulation to allow the controller learnt
using it to bridge the “reality gap” [64], or in other words, for it to continue to produce the
same behaviour after being transferred from the simulator to a real robot. The first issue is
that the simulator cannot model everything. Instead, the simulator designer should focus on
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modelling that part of the world that is relevant to a correctly behaving controller. It is not
necessary to model in detail what happens when a robot crashes into a wall since this is not
a desired behaviour. As long as the simulator models such an event as something equivalently
negative, then the controller will learn to avoid it. The second issue is that the simulator cannot
model any aspect of the real world completely accurately. However, often a naı̈ve simulation is
sufficient to produce a controller with the desired behaviour.

Jakobi defines controllers to be base set exclusive when they rely exclusively on features
of the simulator that correspond to the real world. If some part of the controller relies on a
characteristic of the simulated world that does not have any correspondence with the real one,
it is unlikely to transfer well from the simulator to the real robot. A controller is base set
robust when its performance does not change significantly when moved from the simulator to
a real robot. Even if the controller is base set exclusive, the features in the base set will not
be modelled perfectly accurately. This inaccuracy may lead to controllers that do not maintain
their performance when transferred to the real world. These issues, identified in the context of
evolutionary learning, also seem to apply to learning a policy with reinforcement learning on a
simulator and transferring it to a real robot.

A slightly different issue is the question of whether hand-coded behaviour developed on a
simulator will transfer to a real robot successfully. A review of this field, with a focus on genetic
programming, has been provided by Matarić and Cliff [91]. They point out that there are some
specific challenges for work involving simulation. On the one hand, it is difficult to develop a
simulator that accurately portrays the behaviour of the robot, including the modelling of noise
in the sensors. On the other hand, even if such a simulator can be developed, it is then highly
specialised to the robot, and perhaps even application that the robot has been used for.

Vaughan et al. [122] used a minimalist simulation to simulate the flocking behaviour of
animals such as ducks or sheep, and designed a behaviour that herded the animals to a target
point in an arena. The behaviour was then transferred to a real robot that successfully herded
ducks to a target point in a circular pen. This work argues that it is possible to simulate not
only physical reactions but also simple behaviour of live animals.

Miglino et al. [96] evolved neural controllers for a Khepera robot in computer simulations.
As with Jakobi’s experiments, they found that adding some conservative form of noise during
simulation reduced the “performance gap” between the simulator and the real robot.

2.8 Summary

This chapter began with an introduction to robot soccer and specifically the RoboCup compe-
tition. One of the aims of this competition is to foster research into the application of machine
learning to robotic control. However, most robotic behaviours are developed by hand, and a
number of different architectures are used to structure this task. To understand some of the
issues in developing behaviours, it is useful to look at a specific example. An interesting and gen-
eral problem for robotic control, particularly for two-wheeled robots, is how to move efficiently
from one point to another and there has been much research in this area.

There are many possible ways that such a task could be learnt. However, reinforcement
learning approaches seem appropriate to this type of problem. One aspect that makes reinforce-
ment learning particularly suitable is that, just as with behaviour-based control, the result is a
reactive mapping between situation and action. Furthermore, reinforcement learning provides a
theoretical framework for defining when this mapping is optimal.
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There are a number of different reinforcement learning algorithms available, each with dif-
ferent characteristics. This thesis focuses on Monte Carlo ES, ε-soft On Policy Monte Carlo
control, and linear gradient-descent Sarsa(λ). The first two make use of a tabular representation
of the value of a state-action pair. The latter uses a function approximator to represent the
action-value function.

These algorithms are based on the Markov Decision Process model that assumes that the
state is fully observable. When the state is only partially observable, the POMDP or Partially
Observable MDP model seems more appropriate. However, even though many robot problems
involve a partially observable state, algorithms designed to solve POMDPs do not scale well and
only small problems have been solved in this way.

A number of researchers have investigated the use of reinforcement learning, both with robots
generally, and specifically in the context of a behaviour-based control architecture. In addition,
other machine learning methods have been tried, such as neural networks and evolutionary
algorithms. In some cases, the learnt controllers were compared to best available hand-coded
controllers and found to be roughly equivalent.

Learning behaviour on a real robot can be a slow process. The use of a simulator offers the
possibility of speeding up this process as well as avoiding some of the costs of running a real robot.
However, the use of a simulator may be misleading and performance gains under simulation may
disappear when the behaviour is transferred to the real robot. To avoid this type of problem,
the simulation must be designed carefully, modelling accurately those aspects important to the
problem, while providing an approximation for or ignoring entirely those aspects that are not.

This chapter has introduced the fields of behaviour-based robotics and reinforcement learn-
ing, and reviewed recent literature that is relevant to this thesis. The chapters that follow
develop the contribution of this thesis, beginning with a summary of the architecture for the
robot used.



Chapter 3

Robot Architecture

The previous chapter examined the current literature relevant to this thesis. This chapter
describes the software and hardware architecture of the robot in detail. This lays the foundation
for the subsequent chapter, which looks at how behaviours are learnt for this robot.

The two main components of the software architecture that are described here are the internal
model used to represent the state of the world, and the system for coordinating behaviours.

The first section that follows describes the overall architecture, which is then broken down
into hardware and software components. Software components include the world model and the
behaviour-based control mechanism.

3.1 Overall Architecture

The robot architecture used in this thesis is summarised in figure 3.1 on the next page. A camera
provides visual sensory input in the form of image frames, and these are processed by a vision
system external to the main processing unit. The specialised vision system is described in more
detail in section 3.2.1 on the following page. A summary of what is seen is then incorporated
into the world model, which is described in section 3.3.1 on page 43. The world model also
incorporates position and heading information (x, y, φ) estimated by the motor control interface.
Communication between the world model and the motor control interface is two-way since the
world model also sends position and heading corrections to the motor control interface based on
landmark sightings.

From the world model, a state signal s is created that is specific to the active behaviour. The
active behaviour acts by sending an action a to the motor control interface. The motor control
interface transmits the action to the motor controller and this adjusts the power being sent to
the motors. The motor controller is described in more detail in section 3.2.2 on the following
page.

3.2 Hardware Architecture

In this section, the characteristics of the physical robot architecture important to this thesis are
outlined. Apart from a laptop computer that sits on top of the robot, two other processors are
used. One, a digital signal processor, or DSP, is used to convert digital images into a summarised
form. The other controls power to the wheel motors and activates the kicking device.
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Figure 3.1: Schematic diagram of the robot architecture.

The robot hardware and vision system were created by the staff and students of the School
of Electrical and Computer Engineering, RMIT University.

3.2.1 Vision System

The robot carries a CCD (charge-coupled-device) camera, that is used to capture images every
30th of a second. Visual information is complex and time consuming to process, therefore a spe-
cialised digital signal processor (DSP) was developed to segment the image based on colour, and
to pass the bounding rectangle of each segment to the main processor. A Hough transform [33]
was used to detect the line of the base of the wall, and this information was transformed into
an estimate of the distance and relative angle of any walls seen. Information about the relative
position of the wall was useful in keeping track of the robot’s position. The approach is similar
to that used by Iocchi and Nardi [62].

The vision processor, along with some additional computation on the main processor was
able to track the position of the ball, other robots, the relative angle and distance to any walls
seen, and the position of any goal posts.

3.2.2 Motor Controller

The motor controller controls the wheel motors and kicking device. The kicker is generally
not relevant to this thesis and is not described further. The two wheel motors are controlled
independently by dedicated motors, both of which have a shaft encoder attached to the gearbox.
The encoders allow the control system to determine how much each wheel has rotated and
thus estimate wheel velocities. The control system uses this information to adjust the amount
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of power to the wheel, to try to maintain a specific velocity for each wheel. To do this, a
proportional-integral-derivative, or PID, controller is used. This controller updates the amount
of power sent to the motors 100 times per second.

The high-level controller communicates with the low-level controller via a 9600 baud serial
link. It receives information about how far each wheel has moved, and in what direction, ten
times per second. At this time, it can optionally send a command to adjust the target wheel
velocities. The advantage of using the low-level controller to adjust power, rather than the
high-level controller, is that the low-level one operates on a much faster cycle, and therefore the
power can be adjusted with greater accuracy.

The shaft encoder information provided by the low-level can be integrated by the high-level to
estimate the position of the robot. This estimate assumes that the wheels do not slip. Although
this estimate is usually sufficiently accurate for short term estimate of position, in practice, it
cannot be used for a longer term with any accuracy.

3.3 Software Architecture

The two main components of the software architecture are the “world model” and the behaviour
system. The world model is a combination of the internal representation of the state of the
robot’s external environment and the mechanism used to update that internal representation.
The behaviour system coordinates a set of behaviours, controlling which ones cause the robot
to act.

3.3.1 World Model

The state of the world is not completely or directly available to a robot. At best, robot sensors
can provide evidence about some part of the state. When considering this evidence, it is necessary
to reason about what is being measured, and to allow for the possibility of sensor noise or faulty
sensors. For example, sonar devices are often used to detect obstacles around a mobile robot.
However, what is being measured is the amount of time for an ultrasonic ping to be returned. As
well as being subject to noise, it is subject to interference from other equipment, and variations
in how well obstacles reflect sound. A sonar device can provide evidence about how far away an
object is, but not conclusive evidence.

To assist with this distinction between observations and what they imply, the term belief
is used for an observation or set of observations that have been interpreted. Typically, beliefs
correspond to some aspect of the true state of the world. However it needs to be remembered
that beliefs cannot be guaranteed to be reliable and errors are possible, either through sensor
error or due to errors in interpreting what the sensor data imply.

In this architecture, beliefs are simply stored as one or more real-valued variables. For
example, the position of the ball is stored as a 2-dimensional Cartesian coordinate position
based on a fixed field reference point. Ball position information is originally obtained using
vision information by extracting the red coloured segment and using its position in the field of
view to estimate the ball’s relative position. The relative location of the ball is then translated
to an absolute position based on the robot’s information about its own position and orientation.
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3.3.1.1 Hysteresis

When using beliefs to determine action, it is common to determine some form of threshold point
where, once the value associated with the belief reaches the threshold, the behaviour changes its
action, or possibly the behaviour becomes active or inactive. The problem with using thresholds
is that when near to the threshold, noise in the sensory inputs can cause the behaviour to toggle
on and off in an undesirable way. One possible resolution of this problem is to use two thresholds
rather than one, and to require the more difficult or higher threshold to be reached before the
behaviour is changed, and then once the behaviour is changed, the other threshold is used to
trigger when to change the behaviour back. This is similar to the way a thermostat works.
When the temperature drops below a certain threshold, the heater turns on, and it stays on
until a higher threshold is reached. This avoids turning the heater on and off too frequently.
The difference between the two thresholds is known as the hysteresis.

Hysteresis is particularly useful in specifying the context condition for a behaviour’s acti-
vation. Context conditions are described in section 3.3.2 on the next page. However, built-in
hysteresis runs counter to the approach that will be used in learning behaviours, since it pre-
defines, to some extent, the way that the behaviour acts, and thus limits what can be learnt.
Instead, the approach described in this thesis is to provide the behaviour with a representation
that roughly corresponds to the true state. For example, rather than use a flag to indicate if
the ball is in the defensive half, and then apply hysteresis to avoid that flag from switching too
frequently, the preferred approach is to provide the position of the ball. This allows the learning
process to decide where the thresholds should lie. In addition, consideration of the last action
taken, or the effects of the last action, such as the robot’s velocity, allows the learning process
to properly assess the advantages of continuing with an action versus changing action and thus
avoid vacillation.

The use of hysteresis to avoid chattering decision making for RoboCup robots has previously
been suggested by Castelpietra [32] in the context of coordinating actions amongst robotic team
members.

3.3.1.2 Allocentric Representation

It is common in behaviour-based robotics to prefer internal models that are relative to the
robot [2, 10, 27, 34, 72]. That is, it is usual to make use of an egocentric representation of
the positions of objects. An immediate difficulty with an egocentric point of view is that it
is difficult to relate what is currently perceived to what has been perceived previously, if the
robot has moved. For example, if the robot sees the ball at an angle of 15 degrees to the
right, and 3 metres away, and then moves forward 1 metre but can no longer see the ball,
where should it expect the ball to be? Many behaviour-based systems avoid this problem by not
keeping an internal representation of where the ball is. Non-representational systems often justify
their approach by pointing to the unreliability of past information [27]. Perhaps the ball was
never there, and faulty sensors led the robot to this conclusion erroneously. However, as sensor
technology improves, the need to incorporate past sensor information into the representation of
the world is important enough to require internal representation and reasoning about historical
data.

The alternative, which is used in this work, is to have an absolute coordinate system for
representing the position of objects external to the robot. This is called an allocentric or non-
egocentric representation [57]. An allocentric representation allows the robot to incorporate past
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beliefs more readily. In addition, converting such beliefs into a relative position is a straightfor-
ward calculation, should this be required by a behaviour.

3.3.2 Behaviour System

The behaviour system used in this thesis uses two mechanisms: context and priority. Con-
text determines whether a behaviour is applicable to the situation, whereas priority allows one
behaviour to override another.

Formally, the system for a single robot consists of a tuple 〈B, π, C, P, S,A〉. The set of
behaviours B are each associated with a context condition C : B× S→ {true, false}, a priority
ordering P : B → {0, 1, 2, . . .}, and a policy π : B × S → A mapping between possible states
S and corresponding actions to be taken A. For a particular robot, the priority ordering is
unambiguous, so that P (a) = P (b) ⇒ a = b for all a, b ∈ B. This means that different
behaviours cannot share the same priority. The context condition C(b, s) is true for a behaviour
b ∈ B that is in context, or active, based on the current state s ∈ S. However, it only has
control of the robot if it has the highest priority P (b). Specifically, behaviour b controls the
robot when the state is s if C(b, s) ∧ (∀b′¬C(b′, s) ∨ P (b′) < P (b)). That is, if b is in context
and no other behaviour is both in context and has a higher priority. In this case, the robot’s
action is determined by π(b, s). In this thesis, only the policy mapping π is learnt. The context
condition and priority are predetermined and fixed for the task. Note that it is unnecessary to
learn π(b, s) for states where the behaviour is out of context.

This design avoids the more complex arbitration of the subsumption architecture [25, 26],
motor schemas [6], or even Saphira [72], by only allowing one active behaviour to control the
robot. However, a problem with only allowing one behaviour to control the robot is that design
complexity is moved from arbitration into the behaviour.

A simple example helps to illustrate this point. Consider a robot attempting to navigate
its way across a room containing obstacles. Most arbitration schemes allow the problems of
avoiding obstacles and moving toward a target to be expressed as two or more separate behaviour
modules. However, if only one behaviour is controlling the robot, then this behaviour will need
to incorporate both competing requirements. Bowling and Veloso [23] give an example of how
this can be done by using single behaviours that incorporate both movement to a target point
and avoiding an obstacle.

The single controlling behaviour approach can produce more efficient motion, simply because
the single behaviour is able to take into account all factors. This also means that behaviour
modules designed using this approach may be more difficult to program, thus making learning
of behaviours more attractive.

3.3.3 Decision Cycle

Different sensors provide readings at different intervals. For example, certain types of electronic
compass provide readings 2 or 3 times a second, whereas vision systems usually operate at about
30 times a second. Actuators generally operate on a certain cycle also, and for the physical robot
used here, that cycle allowed updates 10 times per second. Of these cycle times, the key cycle is
that of the actuator. If the robot processes sensor readings, decides on an action and transmits
actuator signals faster than the actuator can receive them, then some signals will be lost. If
the robot is restricted to processing data less frequently than the actuator can process, and if
at least some sensors provide new information at least as regularly as the actuator can receive
commands, some opportunities to react to this new data may be lost. Therefore, as the vision
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system returns data more frequently than the actuator cycle, the decision cycle is tied to the
actuator cycle.

3.4 Related Work

The behaviour-based architecture used here is quite different from the original subsumption
architecture proposed by Brooks [25, 26]. In the subsumption architecture, behaviours override
each other based on levels, a wiring diagram and explicit suppression or inhibition signals. In
this architecture however, behaviours have a strict priority ordering and outputs are overridden.
Also, in this architecture, all sensor information is processed into a world model before being
used. However, it is desirable to ensure that sufficient real sensor evidence is used to form the
world model, so that behaviours are not based on spurious data.

The architecture used here is different from the motor schemas architecture proposed by
Arkin [6], in that behaviour output is not formed into a vector sum, and it is not possible to
use multiple behaviours to affect a single actuator. In the preliminary experiments performed
with the soccer robots used here, motor schemas were tried and found to produce less efficient
movement compared with using a single movement behaviour that combined obstacle avoidance
and movement.

Like Saphira [72], a priority system is used to resolve the problem of having multiple active
behaviours, however, unlike Saphira, a strict ordering is required. In Saphira, behaviours can
have the same priority, and if they do, their outputs are summed using fuzzy logic. The resulting
action is determined from the centroid, or weighted sum, of the fuzzy logic sum. As with Arkin’s
motor schemas, this arbitration mechanism can sometimes cause the robot to perform an action
that was not requested by any of the active behaviours. For example, if one behaviour wants
the robot to turn left, and the other wants the robot to turn right, the centroid approach may
cause the robot to not turn at all. By requiring a strict ordering of behaviours by priority, this
architecture avoids the situation of two behaviours being active simultaneously. This is similar
to the gated behaviour approach used by some hierarchical approaches [67].

3.5 Summary

The robot architecture is a combination of hardware and software. The robot hardware consists
of a vision system and motor controller, while the software is a combination of a world model,
and a behaviour system. The world model is a summary of current and historical sensor data,
and is of an interpreted form that allows multiple data sources to be fused. The behaviour
system is structured to allow only a single active behaviour at any one time. This combined
configuration of a summary world model and single controlling behaviour were initially chosen
to develop efficient hand-coded behaviours, but is also suitable for learning behaviours with
reinforcement learning.



Chapter 4

Developing Behaviours through

Learning

In the previous chapter, a behaviour-based architecture that provides a good basis for learning
behaviours through reinforcement learning was described. This chapter focuses on how this work
extends existing approaches to robot learning. It details a methodology for using reinforcement
learning algorithms in a simulator framework to create real robot behaviours. It explains sev-
eral approaches to designing the behaviour-based system to reduce complexity when learning
individual behaviours. Finally it presents a novel approach to bootstrap reinforcement learning
from a hand-coded behaviour in a way that does not bias the solution.

Traditionally, experiments with robots have focused on whether or not the outcome was
successful, rather than the comparative speed or efficiency. This is mainly because successful
outcomes were infrequent. Real world environments are highly complex, and sensory information
is limited and unreliable. The problem domain of robot soccer requires a slight change of empha-
sis. Although the robot soccer environment is still complex, the complexity has been restricted.
A map of the area is known precisely beforehand, and does not need to be charted. Objects can
be clearly identified by their colour. In addition, recent sensor technology improvements have
allowed researchers to greatly increase the robots ability to accurately estimate the position of
the ball, and other robots. Given these changes, soccer playing robots are now competing on
the basis of such things as: how fast they can get to the ball, how quickly they can pass or shoot
the ball when they get to it, their overall strategy, and how well they work as a team. The first
two correspond to the performance of individual behaviours. The latter two are important, but
good strategy and teamwork will fail if the behaviours used are inefficient or ineffectual.

Given that the performance of individual behaviours is an important factor in the perfor-
mance of the whole robot, it seems sensible to try to improve their performance. On the other
hand, only improving individual behaviours and not the overall strategy means the resulting
overall performance may not be optimal, simply because the strategy may not be optimal.

This raises the question of whether learning should be applied to the task as a whole. The
problem with attempting to learn the whole task is that the complexity is often too great to deal
with in this way. An alternative, favoured by hierarchical approaches to reinforcement learning,
is to factor the task is some way, and then to learn the hierarchy (see section 2.4.10 on page 32).
As Kaelbling et al. [67] point out, hierarchical methods correspond to the combination of a
gating function and a set of gated behaviours. Here the focus is on learning gated behaviours
given an existing gating function.
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Figure 4.1: Process for learning a robot behaviour module.

4.1 Learning Methodology

The learning process used in this thesis is summarised in figure 4.1. The first step in the process
is to formulate the problem as a Markov Decision Process and to design a simulated environment.
The MDP formulation is broken into four related parts: defining the state, the set of actions, a
reward function, and how the action-values will be represented. The next stage is to perform
training and evaluation. This is an iterative process involving some number of training episodes
followed by a set of evaluation episodes. When this has finished, the user may need to review
the behaviour produced and see if it matches expectations. This step is required since it is often
the case that some part of the specification is faulty. For example, there may be insufficient
penalty for causing the robot to crash into an obstacle, leading to a behaviour that causes the
robot to crash too frequently. Another potential problem is that the behaviour may “exploit” the
reward function or simulator in unexpected ways. For example, during preliminary experiments,
a learnt behaviour for moving to a target reversed to the target in nearly all cases. It was later
discovered that the simulator did not properly limit acceleration in reverse. Similarly, several
design iterations may be required to determine an appropriate reward function.

The final step in the process is to evaluate the performance of the behaviour on the physical
robot, to obtain a final measure of the behaviour’s performance.

Unlike other machine learning approaches, reinforcement learning generally proceeds by gen-
erating scenarios or start states at random, rather than selecting them from a training set. Fur-
thermore, performance of the learnt policy is usually estimated by looking at recent returns from
the learning process, instead of testing with an independent set of scenarios. This difference is
due to the idea that reinforcement learning mechanisms continue to learn while they are being
usefully applied. In other words, reinforcement learning generally focuses on the overall perfor-
mance of the agent including the performance during learning, rather than focusing on how well
the agent has learnt the task, or the performance after learning has completed.

In this thesis, most learning occurs on the simulator, and where this is the case, it is possible
to evaluate how well the agent has learnt the task by using a set of test cases. The test set is
generated independently from the training set but some scenarios may exist in both. By using
a predefined test set to test the performance of the policy, it is possible to compare the result
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of this test at one stage of the learning process with the test result at a different stage. It also
becomes more straightforward to compare one learning algorithm with another. If the learning
process improves the overall policy, it will tend to improve the test set result.

The main impetus for using a test set, rather than simply looking at average returns during
learning, is based on the observation that the average reward returned from a set of episodes
sometimes decreased even when the policy had been improved. This was particularly noticeable
when the reward function contained a discontinuity; say, a large negative return corresponding
to a rarely occurring situation, such as the robot crashing into a wall. Typically some starting
states are more prone to causing the robot to crash. For the problems examined, the selection
of start state was a factor in whether or not an extreme value was obtained for the reward.
Therefore, using a standard test set ensured that average test rewards could be fairly compared.

Another factor that might affect test results is the amount of exploration being pursued.
Exploration occurs where the learning algorithm occasionally deviates from the policy. If the
policy is nearly optimal, but the learning algorithm includes a significant amount of exploration,
then the exploration may make the policy appear to be less optimal than if no exploration were
performed. To ensure that results from different algorithms can be compared, the evaluation
does not include exploration.

This thesis makes use of algorithms that alter the policy during an episode, such as Sarsa(λ)
(see algorithm 4 on page 30), and those that do not, such as Monte Carlo ES (see algorithm 2
on page 24). To allow the policy produced by both of these to be fairly compared, no alteration
of the policy is permitted during the evaluation. This has the advantage that, since the same
test set is used periodically for evaluation, the possibility of this test set dominating the learning
process is avoided, and learning episodes are based on a uniform random selection from the
complete set of possible starting states.

4.2 Are Behaviours MDPs?

The argument against applying the Markov Decision Process model to behaviour-based robots
has been made by Matarić [93]. Matarić argued that the agent-environment interaction does
not follow MDP assumptions. Assumptions made by the MDP model, that do not appear to
hold for real world robots are:

1. That the agent interacts with the environment in lock-step, and at discrete time intervals,

2. That states and actions are finite, and

3. That the state of the environment is fully observable.

Violation of these assumptions does not necessarily mean that it will not be possible to produce
a valid behaviour. However, it may prevent MDP-based algorithms from finding the optimal
behaviour or even from converging on a solution.

The assumption that the agent interacts in lock-step with the environment would require
that decisions about what action to take were made instantaneously, and that the transmission
of sensor and actuator data were also instantaneous. Real robots are not capable of doing this
and are subject to a latency or delay between when they sense the environment and when they
act. Although it is common for a robot to interact at discrete time intervals, the latency prevents
this interaction from being in lock-step with changes in the environment.
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The assumption that states and actions are finite does not hold in most real-world environ-
ments. This work uses function approximation, introduced in section 2.4.5 on page 25, allowing
MDP algorithms to be applied to continuous state spaces. Although robots typically allow only
a finite set of actions to be taken, this set can be extremely large. The approach used in this
work is to use a limited subset of the possible set of actions.

The assumption that the state of the environment is fully observable is a critical one, and
was discussed in section 2.4.8 on page 31. Some researchers [11, 58, 89] apply reinforcement
learning to environments that clearly violate this assumption without attempting to resolve the
issues of partial observability. Others [71, 78] use a POMDP model. However there are severe
limitations to the number of states that can be feasibly dealt with in this way (see section 2.4.8
on page 31). Wyatt et al. [130] suggested that violations of Markov assumptions should be
addressed by adding sensors or changing the way that they are processed. They point out that
this process can consume a significant part of the development effort.

The approach used here is to attempt to resolve partial observability in two ways: First, the
target behaviour is derived using a simulator with a fully observable environment. Second, the
real robot makes use of a state estimator or world model that attempts to predict the full state
by integrating current sensor data with past history of sensor data and actions taken.

Simulators are often used for learning robotic tasks when it would be too time consuming to
learn using a real robot (see section 2.7 on page 38). Generally, the trend is for simulators to be
as realistic as possible. For example, Jakobi et al. [64] recommend simulating sensor noise. In
the approach described in this thesis, the simulator provides a fully observable environment. For
example, the position of the ball is available to the behaviour even when it is behind the robot
and would normally be hidden from view. The aim of this is to avoid violating the assumption
of full observability during learning.

This approach necessarily shifts the burden of interpreting sensory input to the state esti-
mator that operates on the real robot. Since the state signal provided by the real robot’s world
model is only an estimate, it will sometimes be incorrect. Unlike the POMDP approach—where
if the state estimate is known to be poor, then this is allowed for when deciding on an action—
this approach ignores the uncertainty in the estimate of the state. The experience in this work is
that it was possible to derive a sufficiently accurate state estimate for there to be no significant
side-effects to ignoring the uncertainty in the state estimate.

Although there are some remaining reservations about the use of the MDP model, this work
will demonstrate that it is possible to use this model to do effective learning.

4.3 Task Decomposition

The problem of task decomposition, or sub-dividing a task into smaller, more manageable chunks,
has been investigated extensively. In particular there has been much recent work in the area
of simplifying reinforcement learning tasks by finding a suitable decomposition, either through
geometric characteristics of the problem, or through teleo-reactive planning. Recent literature in
this area has been covered in section 2.4.10 on page 32. Although the focus of this thesis is mainly
on the problem of learning behaviours within an existing task decomposition—specifically, the
decomposition designed for a robot soccer team—the use of reinforcement learning introduces
some constraints on the way that the task is divided up.

To illustrate the issues involved in decomposing a larger task into behaviours that can be con-
verted to MDPs, it is useful to look at the issues that led to the design of one of the behavioural
tasks.
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Figure 4.2: Illustration of the NearWallIntercept behaviour.

The tasks examined in this thesis were derived from the set of behaviours used by the RMIT-
United Formula 2000 RoboCup team [30]. For example, the “off wall” task that will be examined
in chapter 8 on page 113 was derived from the NearWallIntercept behaviour. The aim of the
NearWallIntercept behaviour is to get the ball away from the wall and / or kick it toward
the opponent’s goal as illustrated in figure 4.2. This behaviour is in context if the ball position
is known and within 300 millimetres from a wall, if the robot is meant to be chasing the ball
rather than supporting or defending, and if the ball is not near a goal. Hysteresis is used so
that once the behaviour is active, the ball only needs to be within 350 millimetres of the wall for
the behaviour to continue to be active. This behaviour actually comprises three sub-behaviours
that are executed according to where the robot is with respect to the ball. When the robot is
far from the ball, it moves to a point beside the ball. In this case, “beside” means on the other
side of the ball from the wall, wherever the wall is, and 500 millimetres from the wall. If the
ball is in a corner, “beside” means 500 millimetres from each of the walls involved.

Once the robot is roughly beside the ball, it then moves toward the ball until the ball is
within reach. If at any stage, the robot is no longer beside the ball, it drops back to the first
sub-behaviour of moving beside the ball. When the ball is within reach it spins on the spot. A
number of rules were used to determine which way to spin. If the ball is in the offensive half
and the ball is on the right relative to the opponent’s goal, the robot spins counter-clockwise. If
the ball is in the defensive half and it is on the left with respect to the own goal, the robot also
spins counter-clockwise. Otherwise, the robot spins in a clockwise direction.

As described above, this behaviour would require a large number of states when framed as
a Markov Decision Process. In this work, the first step to reducing the number of states was
to divide up the task into moving beside the ball and then kicking the ball away from the wall.
Second, kicking the ball when it is near a straight segment of wall is different from kicking it
when it is near a corner and so these tasks were considered separately. Third, the direction of
the kick depends on which wall the ball is near and which goal is being played towards. Rather
than try to make a behaviour that handles all situations, this sub-task was dealt with as a series
of separate behaviours.

This series of decompositions reduced the size of the state space for each individual behaviour,
but created a large number of behaviours where previously there was only one. In this thesis,
it is argued that this is not necessarily a limitation to the approach as a small set of learnt
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behaviours can be reused for symmetrical situations. For example, a behaviour that kicks one
way will be the mirror image of a behaviour that kicks the other way. Similarly, a behaviour
that kicks the ball west on a north wall will be the same as a behaviour that kicks the ball east
on a south wall.

If the behaviour has learnt how to kick toward a goal at the east end, it will be necessary to
provide the behaviour with a mirror image of the state information to get it to kick toward the
west end. Note that if a behaviour is to be reused in a mirror image situation then the actions
will also need to be reflected. In this case, this can be done by swapping the left wheel command
with the command for the right wheel.

Reuse through symmetry has been suggested previously by Lin [77] in a slightly different
fashion to that developed in this work. In Lin’s case, the agent could move in one of four
directions, north, south, east or west, in a grid. Sensory information would be rotated so that
each action appeared as “go north” and a utility established for each.

Lin’s approach assumes that the actions are few and that they match up with a rotation of
the state space. The approach used here extends this idea in that while the sensory information
is still transformed, the result of the behaviour is an action rather than a utility, and this action
may need to be transformed. This allows mirror image situations to be handled by the same
behaviour rather than just ones that are similar under rotation. Another reason why Lin’s
approach could not be applied here is that it relies on the robot being able to move laterally as
easily as moving forward or backward. This is not the case for a two wheel robot, which must
rotate to go in a direction other than forwards or backwards.

4.4 MDP Specification

Behaviours are often developed with loose, descriptive specifications, such as “kick the ball away
from the wall”, or “shoot the ball into the goal”. To develop a behaviour as a Markov Decision
Problem, it is necessary to specify the task more precisely. For example, specifying the reward
function defines a performance measure for the task so that it becomes possible to determine
whether or not one behaviour is better than another.

Referring back to figure 4.1 on page 48, specification of the MDP can be broken down
into defining the state, set of actions, reward function, and action-value representation. These
components are examined in turn below.

4.4.1 Defining the State Vector

The state vector is a subset of the world model, or total set of beliefs, that is supplied to the
behaviour during each decision cycle. In reinforcement learning terms, this corresponds to the
state signal, which was described in section 2.4.1 on page 19. It is convenient to represent
the state signal as a vector in n-space ~x = (x(1), x(2), . . . , x(n))T . Each component of this
n-dimensional vector corresponds to a real valued aspect of the state of the world. For example,
one component might be the distance to the ball, while another, the relative angle to it.

The state vector should be as compact a representation of the world as possible, while
maintaining the Markov property. Note that the Markov property must be examined from the
point of view of the task that the behaviour is being developed to perform. This also means
that the state vector will be different for different behaviours.

To illustrate the issues involved in defining the state vector, consider the task of moving to
a target location for a two wheeled robot. This task will be examined in detail in chapter 6
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Figure 4.3: Transform used with distance d to distribute more resolution of the tabular or tile
coding to states closer to the target.

on page 75. Relevant aspects of the state would seem to include where the robot is currently,
and where it is moving to. In this task, the heading of the robot is also important, since
that affects how the actions change the robot’s position. Also, it is assumed that there are
no obstacles. Given that the task is symmetric under translation, the state can be simplified
somewhat. Specifically, the four coordinates can be shifted so that the target position is always
at the origin (0, 0). The state vector can therefore be encoded by as (x, y, φ)T where x and y
give the Cartesian coordinates of the robot relative to the target and φ gives its heading. This
seems to be all that is required for a robot attempting to intercept a fixed point. However, if
the dynamics of the robot are taken into account, the momentum and angular momentum are
important. Assuming the mass and shape of the robot is constant, momentum and angular
momentum can be coded as left and right wheel velocity (vl and vr), yielding an expanded state
vector (x, y, φ, vl, vr)T . Since the choice of the orientation in the Cartesian axes is irrelevant
(in this case, at least), the position and heading information can be simplified to distance plus
relative angle to target θ. At this stage, the state vector is of the form (d, θ, vl, vr)T . A potential
problem, however is that it is necessary to provide an upper limit on the distance. At the same
time, given the nature of the task, it seems likely that more resolution will be required when
the distance is small. Also it is desirable to generate a behaviour that will handle any distance.
Therefore, the distance is mapped using a function f(d), that is defined as,

f(d) = 1− e−kd, (4.1)

which has a domain of [0,∞) and a range of [0, 1]. The constant k controls the shape of the
curve and was set at 1 for the experiments here. A graph of this transform is shown in figure 4.3.
This technique is based on work by Santamaŕıa et al. [104]. The final vector used for the efficient
movement task is then (f(d), θ, vl, vr)T where f(d) is defined by equation (4.1).

The state vectors for each of the three robotic tasks are given in section 6.3 on page 77 for
the efficient movement task, section 7.3 on page 96 for the “turn ball” task, and section 8.3 on
page 113 for the “off wall” task.
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Figure 4.4: Effect of adjusting number of actions on the test performance of cmu-move-to under
simulation. Note that the X axis is the number of actions per wheel, so the total number of
possible actions is the square of this number. The test reward shown here is further explained
in section 6.9 on page 81, but roughly speaking it corresponds to the negative of the average
number of steps to reach the target, so a higher value for the test reward is better. Also note
that the X axis uses a logarithmic scale.

4.4.2 Defining the Action Set

Part of the formulation of a Markov Decision Process is to define the set of available actions A.
In this thesis, all of the tasks examined involve actions that are setting target wheel speeds. As
with the definition of the set of states, the set of actions should be as small as possible. However,
the experience here is that reducing the set of actions too much may have negative consequences.
Figure 4.4 shows the effect of adjusting the number of available target wheel speeds per wheel
on the cmu-move-to movement behaviour. The value of k used for the cmu-move-to was 1 (see
algorithm 1 on page 17).

Normally, cmu-move-to outputs continuous valued wheel velocities. Here, the values have
been discretised by finding the nearest discrete wheel velocity. The discrete wheel velocities
are evenly spread over the range [−1, 1] metres per second. As the graph in figure 4.4 shows,
performance with 2 or 4 actions per wheel is poor but increases quickly as the number of actions
increases. After 8 actions per wheel increasing the number of actions does not significantly
improve test performance. These results demonstrate that the number of actions should not
be too small. However, it also illustrates that there may not be much advantage in allowing
many actions. For the efficient movement task, 5 actions per wheel were used as this seemed to
be a reasonable compromise between having a small number of actions while still maintaining
reasonable performance for behaviours such as cmu-move-to.

Actions for the three tasks are discretised differently depending on the task. The set of
actions for each of the three robotic tasks is described in section 6.4 on page 77 for the efficient
movement task, section 7.4 on page 97 for the “turn ball” task, and section 8.4 on page 115 for
the “off wall” task.
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4.4.3 Representing Action-Values

How the action-values, or the values of each state-action pair, are represented internally is a key
factor in the performance of MDP control algorithms. The most basic approach to representing
action-values is to use a table with one element per state-action pair. However, if the state
is continuous, it is not possible to enumerate all state-action pairs in this way. There are two
possible approaches to resolve this problem. The first is to use a finite set of representative
states, and to map the actual state onto this finite set in some way. This is then combined with
reinforcement algorithms that are based on a tabular coding of the data. This first approach
is referred to here as discretisation and is a generalisation of the bit-vector approach used
elsewhere [11, 58, 88]. The second is to use a generalised function approximator that maps the
continuous state-action pair directly to its corresponding value.

The bit-vector approach assigns a certain number of bits per sensor reading. For example,
each sonar device might be assigned two bits, one each for near and far objects. Sonar devices
do not simultaneously detect near and far objects and so one of the four possible combinations
is never used. Given that an array element is required to store the action-value for each pos-
sible state-action pair, this coding can lead to a substantial number of unused array elements.
Therefore, in this work, a slightly different approach is taken to determining the index into the
action-value array, to avoid wasting array elements. The main reason for reducing the size of the
array is to reduce the space required by the learning algorithm. The amount of time required
to update the eligibility trace may also be reduced however this will not be the case if a sparse
coding of the eligibility trace is used.

The aim of discretisation is to map a real-valued state-vector onto the set of integers in the
range [0,m − 1] where m is the number of states. The integer then corresponds to an encoded
form of the state signal s. The approach used in this work is to begin by defining vectors for
the minimums ~a = (a(1), a(2), . . . , a(n))T , the maximums ~b = (b(1), b(2), . . . , b(n))T , and the
number of intervals ~c = (c(1), c(2), . . . , c(n))T , where a(i) is the minimum value encoded for
x(i), b(i) is the maximum, and c(i) is the number of intervals (or the interval count) in the
discretisation. Note that the number of states encoded is the product of the number of intervals
in each dimension, or,

m =
n

∏

i=1

c(i). (4.2)

To encode the vector ~x, the first step is to find the nearest interval for each element x(i).
This intermediate result is denoted p(i), with the complete vector of intermediate results being
~p = (p(1), p(2), . . . , p(n))T . The vector ~p is then mapped uniquely to the state s,

p(i) =

⌊

x(i)− a(i)

b(i) − a(i)
(c(i)− 1) +

1

2

⌋

, (4.3)

s = p(1) +
n

∑

j=2



p(j)
j−1
∏

i=0

c(i)



 , (4.4)

assuming the number of dimensions n ≥ 2. The mapping from ~p to s is one-to-one and is
straightforward to reverse using remainder arithmetic, however only an approximate reversal
can be performed to go from ~p to the original state vector ~x. A simple example of this technique
is illustrated in figure 4.5 on the next page. In this simple example, the state-vector consists of
two dimensions. Regions inside the boxes are mapped to s according to the box number. It is
an assumption of this process that the coding covers all possible values of the state-vector.
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Figure 4.5: Example discretisation of a two-dimensional state space. The minima and maxima
of the ith dimension are a(i) and b(i). The numbered boxes are the regions that correspond to
each possible “state”, or in other words, each possible value of s. The number of intervals are
~c = (6, 3)T .

Of the experiments performed here, only the efficient movement task made use of discreti-
sation. As noted in the previous section, the state vector corresponds to ~x = (f(d), θ, v l, vr)T .
The minimum, maximum and count vectors were ~a = (0,−π,−2,−2)T , ~b = (1, π, 2, 2)T , and
~c = (21, 40, 21, 21)T . In this case, the number of encoded states is m = 370 440. To give an exam-
ple, if the robot’s current state is 1 metre distant from the target, if the target is at an angle of 90
degrees, and the left and right wheels are moving at 0.5 and −0.5 metres per second, respectively,
then the vector ~x is

(

f(1), π
2
, 0.5,−0.5

)T
. Referring back to equation (4.1), the transformed dis-

tance is f(1) ≈ 0.632. Applying equation (4.3) for each element gives ~p = (13, 29, 13, 8)T , and
then applying equation (4.4) gives s = 80 994. This is then used in conjunction with the action
index to look up a table of action-values. Note that the two dimensional look-up table is stored
using 4-byte floats and is thus 370 440 × 25× 4 or about 37 megabytes in size.

The tile coding algorithm uses a different mechanism for converting the state vector into
an action-value, and this was described in detail in section 2.4.5 on page 25. The parameters
chosen to set up the tile coding are described for each of the three robotic tasks in section 6.6
on page 79 for the efficient movement task, section 7.6 on page 98 for the “turn ball” task, and
section 8.6 on page 117 for the “off wall” task.

4.4.4 Reward Function

A reward function is a statement of the desired goal of the behaviour. It specifies what the
intermediate reward will be for using a particular action in a particular state. For many problems
the reward will be some constant, negative value for all states except the goal state. In order
to maximise the expected reward for this sort of problem, an optimal policy needs to get to the
goal state as quickly as possible. Goal states are terminal states that give positive rewards, or
at least, are not excessively costly.

One aspect that was important to consider was what is referred to in this thesis as illegal
states. As Jakobi pointed out [63], such states are both undesirable and difficult to model
precisely. For example, when a robot crashes into a wall it has entered a state that is undesirable.
What happens as a result of the crash is difficult to model. There are several ways to deal with
this aspect of real world problems. One is to restrict actions to those that stay within the set
of desired states. This is not always possible if the cause and effect model of actions is not
available. Another is to model the effect of such actions in a simplified way. In the example
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above, the robot collision might be modelled as if the robot immediately stopped just before
touching the wall. A third approach, and the one recommended by Jakobi, is to include illegal
states, and to assign a large penalty when they are reached. It is important that the overall
reward for reaching the goal state is not less than the penalty for reaching an illegal state.

This approach, of penalising illegal states but also making them terminal, is used for the
“turn ball” (section 7.5 on page 97) and “off wall” tasks (section 8.5 on page 115). For the turn
ball task, illegal states are where the ball has drifted out of the robot’s grasp too soon. This
is an artificial restriction on the nature of the solution, and it would also have been reasonably
straightforward to simulate what happens when the ball is further away. However, in the case
of the “off wall” task, when the robot crashes into the wall, and in particular, when the ball is
squashed between the robot and the wall, the simulator, being somewhat of a simplification of
the physics involved, sometimes simulated the ball being pushed through the wall. Fortunately,
it was not necessary to make this part of the simulation more realistic, just to detect it and
consider it an illegal state. To make it illegal, the robot was “stalled”, thus terminating the
episode.

It is a requirement for Markov Decision Processes to have reward functions that are some
function of the state transitioned from s, the action taken a, and the resulting state s ′ (see
section 2.4.1 on page 19). This makes sense, since it is assumed by algorithms based on MDP
assumptions that it is possible to converge upon the action-value function of each state-action
pair. If the reward function is dependent on factors other than the state or action, then it may
not be possible to converge on a single value for the action-value for a state-action pair. For
example, when designing the reward function for the turn-ball task, a desirable attribute of the
turn is that it is sufficiently tight, so that it executes within the space allowed by the soccer
pitch. A factor that measures this is the Euclidean distance to the starting point. Although this
information is available to the simulation, it is not coded into the state-vector. Therefore, if it
was included into the reward function, this would violate an assumption of the MDP model, and
could affect how accurately the action-values can be estimated. Although this factor might be
added into the state-vector, another, simpler option was tried, which was to include the velocity
of the robot in the one step reward function. Note that over a complete episode, the sum of
the velocity at each step is proportional to the distance travelled. The reward function for the
turn-ball task is described in more detail in section 7.5 on page 97.

4.5 Simulation Environment

An important characteristic of the simulator used in this work is that it allowed both an inter-
active mode, with a graphic display of the robot and its environment, and also a batch mode
that still performed the same simulation but without displaying it. This met the requirement
previously noted in figure 4.1 on page 48 to allow both a fast environment for batch learning
and also a mode where the user can evaluate the qualitative aspects of the learnt behaviour.

The simulation environment was altered slightly for each robotic task. For example, there
were no simulated obstacles for the first two tasks, and no ball for the efficient motion task.
The latter two tasks also required collision detection and response simulation. Common aspects
include the simulation of the kinematics of the robot. This aspect of the simulation is explained
in more detail in appendix A on page 133. All of the characteristics were simulated in two
dimensions, using a plan view.

Jakobi [63] points out that, in the context of evolutionary algorithms, simulators should
be designed so that they are minimal representations of the environment. This approach also
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applies to MDP based algorithms. In addition, Jakobi points out that aspects that indicate
failure, or in other words, situations that are undesirable, do not need to be simulated properly.
One example of this issue occurred in connection with the simulation of collision response.

Calculating the correct collision response can be complicated and it is usual to make some
simplifications when simulating it. A common approach is to estimate the response based on
how far the two colliding objects intersect. A more accurate method, and the one used here,
is to rewind the simulation to the instant of the collision, and to calculate the response as a
transfer in momentum. Unfortunately, this approach treats the objects as though they were
perfectly inelastic and does not give accurate estimates when several objects are resting against
one another—for example, when the robot is squashing the ball against the wall. As mentioned
previously, this situation is difficult to simulate properly and also is not a desirable situation. It
was therefore treated as though the robot had stalled, and was thus an illegal terminal state.

Some other characteristics of the simulation environment relate to how partial observability,
sensor error and latency are dealt with, and these are taken up in the following three sections.

4.5.1 Partial Observability

The problem of sensors providing incomplete information on the state of the world was reviewed
in section 2.4.8. In the robot tasks examined in this thesis, partial observability becomes an
important issue with the “off wall” task. In the efficient movement task, it is assumed that there
are no obstacles and the odometry is assumed to be sufficiently accurate, or if not, is corrected
by some other means. In the “turn ball” task, the task ends when the ball is out of the fingers
and so the ball must always be visible. However, in the “off wall” task, the ball can sometimes
be behind the robot where it cannot be seen.

This thesis does not make use of the POMDP model for resolving issues of partial observabil-
ity as this model does not seem to scale to large problems. Instead, simulated training occurs
with “perfect” sensors that continue to see the ball when it is behind the robot. When the learnt
behaviour is implemented, the world model substitutes for the perfect sensors of the simulator
by providing an estimate of the position of the ball when it cannot be seen. This allows both
a policy to be learnt on the simulator for situations where the ball would normally be out of
sight, and for that policy to be used on the real robot. A potential problem with this approach
is that, if the estimate of the state provided by the world model is incorrect, then the behaviour
may produce an incorrect response.

4.5.2 Sensor Error

As reviewed in section 2.7 on page 38, many authors advise that proper simulation of sensor
error is critical to learning behaviours. It may be surprising then, that sensor error was not
simulated in the simulator used here.

The main reason for choosing not to simulate sensor error was that the architecture used
incorporates a world model that already filters sensory information. When writing hand-coded
behaviours, it makes sense to attempt to improve the quality of the data in the world model
as this tends to lead to better performing behaviours. Section 2.4.9 on page 32 reviews some
of the approaches that have been used to do this. Similarly, when deriving behaviours through
learning that are intended to make use of the same architecture, it seems sensible to rely on
the world model and the process that builds it. Therefore, the simulator does not simulate the
sensor error, and instead the world model used in the physical robot tries to reduce the error in
the data supplied to the behaviour.
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Figure 4.6: Latency in the interaction between the robot and the environment. The combined
latency is the sum of the latencies, or tsensor + tdecision + tactuator.

In the experiments here, a predictive filter was used to improve estimates of the state of
the ball and the position relative to the wall. Since only a single robot was used, it was not
possible to make use of cooperative techniques. Also, during the first experiment, the vision-
based localisation mechanism was not used.

4.5.3 Latency

Another significant factor in the experimental configuration is the control latency in the physical
robot. Some control latency is inevitable, but experiments on the robot used here demonstrated
that the latency was a significant factor in its performance. The latency in this system, or the
time delay between an action being taken and the effect of that action showing up, is summarised
by figure 4.6. Part of the delay is due to the time that it takes to read sensors. Although sensors
usually can be read rapidly, the low-level controller only polls them every so often, and takes
additional time to report status back to the main computer. The amount of time taken to
make a decision depends on many factors. For example, in a preliminary experiment, a learnt
behaviour’s tile coding data consumed most of the available memory. This caused more paging
to occur, and thus caused a significant increase in the decision latency, thus causing the robot’s
performance to be worse than expected. Finally, actuator latency corresponds to the time taken
to transmit a command to the low level system and for that system to adjust the power to the
motors.

Given the importance of latency on the behaviour of the robot, a possible approach would be
to learn under a simulated environment that included latency. However, a problem with including
latency in the simulator is that it breaks the assumption that the state has the Markov Property.
That is, the state transition that is the result of an action, actually corresponds to the action
before or even an action performed some time ago. If it were possible to say that the latency
corresponded to exactly one decision cycle, then the assumption that the state has the Markov
Property could be restored by including the previous action in the state signal.

An alternative approach, and the one used in this work, is to forward predict the state of the
robot to attempt to counteract the effect of latency. The reason for taking this approach is that
this was the approach originally used to counteract latency in the RMIT-United hand-coded
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behaviours.

Specific aspects of the simulation environment pertinent to each task are given in section 6.7
on page 80 for the efficient movement task, section 7.7 on page 99 for the “turn ball” task, and
section 8.7 on page 118 for the “off wall” task.

4.6 Initialisation using a Behaviour

In this section, a new technique, termed Policy Initialisation, is proposed. This technique makes
use of an existing behaviour to bootstrap the learning process. To implement this technique,
this thesis makes several modifications to the standard reinforcement learning algorithms. To
initialise Monte Carlo based algorithms, an initial policy is provided and a modification is made
to the greedy policy update to protect this initial policy slightly. To initialise linear Sarsa(λ),
four variant approaches are used, three of which perform their work prior to Sarsa(λ) running
allowing the standard Sarsa(λ) algorithm to be used. The last variant used to initialise Sarsa(λ)
is integrated into the tile coding algorithm used by Sarsa(λ).

The idea of Policy Initialisation originates from two characteristics of reinforcement learning
algorithms: First, they typically start with an arbitrary policy, and second, they tend to improve
on the initial policy. Sutton and Barto [118, page 56] note that imparting prior knowledge
through the reward function can cause side effects. Their example is that a chess program
should not be rewarded for taking pieces but for winning the game. They also suggest that
prior knowledge might be better imparted through the initial policy or value function. In this
thesis, Policy Initialisation is proposed to make use of a hand-coded behaviour to provide prior
knowledge. As Sutton and Barto have suggested for this type of approach, variants are tried
that either provide an initial policy or an initial value function.

The advantage of Policy Initialisation is simplest to explain in terms of the Policy Iteration
algorithm. Policy Iteration works in two phases, the first phase makes the policy greedy with
respect to a known transition probability distribution and current estimates of the value of
each state. The second phase updates the state values by finding the action that gives the
best expected return by considering the possible next state values and the associated one step
rewards.

Policy Iteration will always find the optimal policy regardless of the initial values assigned to
states, or the initial policy followed (see section 2.4.3 on page 22). Therefore, using a particular
policy as a starting point will not make the final policy found less optimal.

The question is whether using an initial policy will speed up the algorithm or cause less
policy improvement cycles to be required. Consider a robot moving toward a target position.
For a robot that can move equally well in any direction, a simple policy is to move according to
the direction of the target, and if there are no other obstacles, this is the optimal policy. If an
obstacle is introduced, the policy is no longer optimal for all cases. However, it is still a very
good starting point. The simple policy provides reliable values up to the point of the barrier, so
only the values from then on need to be adjusted.

The approach suggested here is based on seeding the learning process with an initial policy.
This work proposes that, if this initial policy is better performing than the arbitrary policy
typically used by the learning algorithm, then this will lead to earlier convergence to the optimal
policy.
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4.6.1 Initialisation for Tabular Algorithms

In this section, Policy Initialisation modified forms of tabular Monte Carlo ES and tabular
Monte Carlo ε-soft On Policy algorithms are presented. When modifying these algorithms
several factors were found to be important. First, if the only change to the algorithm is to set
the initial policy, then there is little advantage to this approach since most of the initial policy
disappears within the first few iterations. Second, for the task examined, specifically the efficient
movement task (see section 6 on page 75), it was necessary to set an upper limit on the length
of the episode to avoid a situation where the algorithm never terminates. These issues are now
discussed in more detail.

Setting the initial policy alone is not sufficient to gain immediate benefit from the prior
knowledge entailed by the hand-coded behaviour provided as an initial policy. This was the
approach used in preliminary experiments for the efficient movement task. The action-values
were initialised to zero, but this was optimistic, since episodes in this task always yield a negative
return. During the first few episodes, the action-values corresponding to the initial policy were
revised down, causing the current policy to be changed. All other actions were tried before the
one suggested by the initial policy was considered again.

This work proposes a simple solution to this problem: do not trust action-values for state-
action pairs that have not been visited. That is, if the state-action pair has not been visited,
the action-value stored for it is never considered better than one that has been visited. This
solution is implemented by the last line of the Policy Initialisation modified form of Monte Carlo
ES shown in figure 5 on the following page. Note that the modified algorithm still explores by
randomly choosing the first action.

The second factor that was found to be critical with respect to using Monte Carlo methods for
control, was that episodes must terminate. This aspect of Monte Carlo methods is mentioned by
Sutton and Barto [118, page 111]. With the efficient movement task, episodes following arbitrary
policies may not terminate. A reason for this is that it is possible for the robot to move in a
loop, or not to move at all, and thus never reach the target.

To terminate such episodes, a limit on the maximum number of steps per episode is used.
This seems reasonable for the efficient movement task, since it is possible to guess the maximum
number of steps taken by the optimal policy given any starting point, and thus ensure that the
limit is much greater than this. However, it is conceivable that for some problems this would
not be the case.

The Policy Initialisation modified form of Monte Carlo ES is shown as algorithm 5 on the
next page. Algorithm 5 is based on Monte Carlo ES (algorithm 2 on page 24) and has been
modified to (a) use a behaviour for the initial policy and (b) ignore unvisited state-action pairs
when finding the greedy action. A similar modification based on the Monte Carlo ε-soft On
Policy algorithm (algorithm 3 on page 26) was also evaluated. The ε-soft variant differs from
Monte Carlo ES in that exploration occurs throughout the episode, rather than just at the start.

The approach of providing an initial policy should trim the search space for Monte Carlo ES
in the same way that it would for Policy Iteration. Also, just as changing the initial policy for
Policy Iteration does not affect the ability of the algorithm to find the optimal solution, similarly,
Monte Carlo methods should not be affected by changing the initial policy. However, it has to
be remembered that there is no proof of convergence for Monte Carlo ES or Monte Carlo ε-
soft. Only selecting policies that include visited actions should not prevent the algorithms from
converging on a solution. The reason for this is that both algorithms will eventually explore every
state-action pair regardless of this modification, because they randomly select some actions. Also
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1. (Initialise policy from behaviour.) π(s)← πB(s) for all s ∈ S

Behaviour B is converted to a policy by querying it with each possible state s, and storing
the resulting action in the mapping π.

2. (Initialise state-action visit count to zero.) N(s, a)← 0, for all s ∈ S, a ∈ A

The state-action visit count keeps track of how many times an action has been tried from
a particular state. This allows the value of the state to be estimated by an average.

3. Repeat forever:

(a) select s, a randomly

(b) t← 0, r ← 0, R←empty list

(c) while t ≤ tmax and s is non-terminal

i. Append (s, a, r) to R if first visit to s, a this episode

ii. (Generate next state.) s′ ← simulator(s, a)

iii. (Track total reward so far.) r ← r + R(s, a, s′)

iv. (Move to next state.) s← s′

v. (Assign action based on current policy.) a← π(s)

vi. (Increment number of steps.) t← t + 1

(d) (Store the value of whole episode.) Q0 ← r

Q0 is the value of the episode starting from the first, randomly selected state-action
pair.

(e) for each (s, a, r) in R:

i. (Update the average value recorded for the state-action pair.)

Q(s, a)←
Q(s, a)N(s, a) + (Q0 − r)

N(s, a) + 1

ii. (Increment the number of visits to this state-action pair.)

N(s, a)← N(s, a) + 1

(f) for each s in R:

i. (Update policy so that it is greedy with respect to the action-value.) Ignore
Q(s, a) elements for state-action pairs that have not been visited.

π(s)← arg max
a∈Ws

Q(s, a)

where Ws = {a : N(s, a) > 0}, or in other words, the set of actions from state s
that have been tried at least once.

Algorithm 5: mces-policy-init : Monte Carlo ES using an initial policy πB
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note that, assuming that the algorithms are capable of converging on the optimal (something
that seems likely but remains unproven), then this solution will not be biased since the reward
function does not need to be altered by this approach.

There remains a possibility that changing the initial policy will affect how close the solution
will be to the optimal. Without a proof that the base algorithms converge, it is impossible to
prove that this is not the case. However, given that the convergence to the optimal of Monte
Carlo ES and ε-soft algorithms “seem likely” [117], and given that these algorithms do not place
restrictions on the initial policy used, it seems likely that they will also always converge to the
optimal solution.

The above extensions to Monte Carlo ES and Monte Carlo ε-soft On Policy algorithms are
evaluated experimentally in section 6.9.1 on page 82. These experimental results will show that
Policy Initialisation modified Monte Carlo algorithms produce a better policy more quickly than
if unmodified Monte Carlo algorithms are used.

4.6.2 Initialisation for Function Approximators

In this section, four ways to perform Policy Initialisation for reinforcement learning algorithms
that make use of a function approximator are presented (see section 2.4.5 on page 25). Initiali-
sation from a behaviour is more complex when using a function approximator to represent the
action-value than when a tabular representation is used. In the previous section, it was possible
to encourage the algorithm to use the initial policy until action-values were learnt by not con-
sidering unvisited state-action pairs when updating the policy. When a function approximator
is used to represent the action-value function, it is no longer clear whether a state-action pair
has been visited. The solution, used for the first three variants presented below, is to provide an
initial value function instead. These first three do all their work prior to running the standard
linear Sarsa(λ) algorithm (see section 2.4.6 on page 27). The only change to the Sarsa(λ) algo-
rithm is that the initial function approximator weights ~θ are set according to the result of the
Policy Initialising algorithm, rather than being arbitrary. The fourth variant involves a change
to the tile coding algorithm to generate sample values for tile weights based on the initialising
behaviour when the weights are first used.

The question remains how to set the initial parameter vector ~θ based on an initial policy. The
solution presented here is to learn the parameter vector. Learning with tile coding is performed
by updating relevant weights to bring their sum closer to a training sample. Relevant weights
are ones that contribute to the estimate (see section 2.4.5.1 on page 27). The approach is not
specific to tile coding, however, and whatever mechanism is used to learn the parameter vector
can also be used during initialisation.

This changes the problem from how to select appropriate values for ~θ, to one of how to select
state-action pairs to sample. Several approaches were tried. The first was to use a Monte Carlo
ES style algorithm. A second approach modified this by also initialising other actions for visited
states to be pessimistic with respect to the initialising policy. The third approach is similar to
the first but uses linear Sarsa(λ) as the basis for learning the values associated with a policy.
The last approach examined uses lazy initialisation of a tile weight. That is, estimating the
value of a state-action pair based on the initial policy is delayed until the value is first needed.

The aim of all approaches is to maximise the benefit gained from the a priori knowledge given
by the hand-coded behaviour. An experimental evaluation of each of these approaches is given
in section 6.9.2 on page 84. Unfortunately, this evaluation will show that, in the context of the
efficient movement task, none of the Policy Initialisation approaches for function approximated
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1. (Zero parameter vector.) θi ← 0 for all i

2. Repeat for some number of episodes

(a) (Randomly select start state-action.) s← random, a← random

(b) (Generate episode.) Generate an episode using policy πB storing reward so far for
each visited state-action.

(c) For each visited state-action (s, a):

i. r ←estimated reward based on episode

ii. (Compute error in function approximation.)

δ ← r −Q(s, a)

iii. (Update ~θ based on δ and learning rate α.)

Algorithm 6: mces-value-init : Monte Carlo ES Value Initialisation using an initial policy πB .

action value functions provide significant performance gains, when the cost of initialisation is
included.

4.6.2.1 MCES Value Initialisation

The first approach is referred to as Monte Carlo ES Value Initialisation or mces-value-init and
is shown as algorithm 6. As with Monte Carlo ES, a random state and action is used as a start
point, then the hand-coded behaviour is used subsequently. In the discussion of these algorithms,
the estimate produced by the function approximator is referred to as Q(s, a).

Exactly how ~θ is updated depends on the function approximator. The algorithm was explored
using tile coding, and in this case, the tiles that were relevant to Q(s, a) are adjusted by αδ/n
where n is the number of tile layers.

A particular behaviour will only ever take one action from any particular state. Therefore,
all other actions for that state will not be assigned a value until both the state and action are
selected as the first state-action pair for the episode. With a large number of states and actions,
this approach may take a long time to produce values for actions other than the action selected
by the initial behaviour.

4.6.2.2 Pessimistic MC Initialisation

For the efficient movement task and the “turn ball” task, episode returns are always negative.
Therefore, initialising all values to zero can be seen as optimistic. That is, the estimate of
how much reward will be received when starting from that state-action combination is greater
than the amount that could possibly be received. Optimistic initial action-values encourage
exploration. That is, when a state is first visited, all action-values will be zero, and so an action
will be chosen at random. Experience will cause the selected action to have its value reduced.
Subsequently, when the state is visited again, the action will be chosen from all states except
the one just visited. This cycle continues until all actions have been tried at least once. This
can be seen as a sort of breadth-first search.
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1. (Zero parameter vector.) θi ← 0 for all i

2. Repeat for some number of episodes

(a) (Randomly select start state.) s← random

(b) (Generate episode.) Generate an episode using policy πB storing reward so far for
each visited state-action.

(c) For each visited state s:

i. r ←estimated reward based on episode

ii. For each possible action a:

A. (Compute error in function approximation.)

δ ← r −Q(s, a)

B. if a 6= πB(s): δ ← δ − 1

C. (Update ~θ based on δ and learning rate α.)

Algorithm 7: minus-one-init : Pessimistic MC Initialisation using an initial policy πB .

Normally this form of natural exploration is beneficial. However, to make the best use of
the information provided by a working behaviour, actions suggested by the behaviour should
not be discarded from the policy until a demonstrably better action is found. Given this, the
MCES Value Initialisation algorithm was modified to initialise actions not suggested by the
initial behaviour to a value more negative than the action suggested by the behaviour. This
algorithm is denoted minus-one-init and is shown as algorithm 7.

Algorithm 7 does not select the initial action at random, but instead updates all actions
from a particular state. The update depends on whether the action matches that produced by
the behaviour for that state. If it does, the update is straightforward, and based on the amount
of reward received by following the policy. Otherwise, the update is one less. The basic idea
is to make the greedy policy initially match the policy of the behaviour, and also to establish
reasonable estimates for the value of the state-action pair. Note that, unlike mces-value-init,
this algorithm does not explore in any sense. This is acceptable since it is only intended to be
used to find the action-values associated with a particular policy, not to find the optimal policy.

4.6.2.3 Sarsa Value Initialisation

The previous two approaches attempt to initialise the tile coding weights for use by linear
Sarsa(λ) using a Monte Carlo view of what those weights should be. One immediate difficulty
with this approach is that it ignores the effect of λ. The λ constant controls the decay of
eligibility in the eligibility trace. Monte Carlo methods do not include this decay and are
equivalent to λ = 1. Therefore, to correctly estimate the action-values associated with a policy
in an environment with λ < 1, one approach is to use a Sarsa(λ)-like algorithm to perform
initialisation, modified to apply a fixed policy. This approach is denoted as sarsa-init and is
presented here as algorithm 8 on the next page.

The sarsa-init algorithm fixes the policy by choosing it according to the initialising behaviour
rather than greedily selecting it on the basis of the current estimate of action-values. Note
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1. Initialise ~θ arbitrarily

2. Repeat for some number of trials:

(a) Initialise ~e← ~0

(b) s← select randomly ∈ S

(c) a← select randomly ∈ A

(d) While s is not terminal:

i. ~e← γλ~e

ii. For all i ∈ Fsa:

A. e(i)← 1 (replacing traces)

iii. Take action a, observe reward r and next state s′

iv. δ ← r −Q(s, a)

v. Get next action from behaviour B: a′ ← πB(s′)

vi. With probability ε: a′ ← a random action ∈ A

vii. If s′ is not terminal:

A. δ ← δ + γQs′(a
′)

viii. ~θ← ~θ + αδ~e

ix. a← a′, s← s′

Algorithm 8: sarsa-init : Linear, gradient descent Sarsa(λ) with binary features and replacing
traces used for value initialisation.
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that this policy is softened based on the exploration parameter ε. That is, the policy has a
non-zero probability that any particular action will be taken in any state. As opposed to the
standard linear Sarsa(λ) algorithm, the first action is chosen at random. Given that the policy is
fixed, most updates will occur for actions corresponding to the actions chosen by the initialising
behaviour. Therefore, selecting the first action at random means that more updates will occur
for state-action pairs that do not correspond to the initialising behaviour.

In this scheme and also the previous two, the algorithms execute prior to running the normal
learning algorithm. The following approach, however, is a direct modification to the standard
linear Sarsa(λ) algorithm that performs initialisation on demand.

4.6.2.4 Lazy Initialisation

A difficulty faced by the initialisation schemes suggested so far is that if there are a large number
of weights, it will take some time for all weights to become initialised. In addition, there is no
clear point at which to stop initialising, since the initial states and actions are selected at random,
and therefore an infinite number of episodes would be required to guarantee that all weights are
initialised. Another issue is that some weights may not need to be initialised to successfully
learn the task. For example, the weights may correspond to states that are not possible.

An alternative to attempting to initialise all weights prior to using Sarsa(λ) is to flag all
weights as uninitialised in some way, and to estimate their value lazily; that is, estimate their
value when they are first accessed. This thesis uses the term Lazy Initialisation for this approach.

Lazy initialisation is implemented by first initialising all of the tile weights to a sentinel value.
When an action-value is queried, if any of the associated tile weights contain the sentinel value,
a value for the state-action pair is estimated using the initialising behaviour. The estimation
is similar to that of the Monte Carlo ES algorithm—generate an episode beginning with the
state-action pair, follow the initialising behaviour from then on and find the discounted total
reward for the episode. This estimate is then used to update the uninitialised weights. Updating
the uninitialised weights occurs in a slightly unusual fashion. Given an observed error δ, and k
uninitialised tile weights in the set of relevant tiles Fsa, each uninitialised tile weight is set to
δ/k. This update only occurs for uninitialised weights and therefore only occurs a single time
for any particular weight. This update changes the weights to set the estimated action value to
be exactly that of the observed action-value. It seems reasonable to perform this type of update
as it only occurs once, and is essentially a form of initialisation.

4.6.3 Related Work

The Policy Initialisation approach developed here is in contrast to Matarić’s shaped reinforce-
ment approach [94, 93], and is more similar to Millán’s teseo [97]. Matarić argues for shaping
the reinforcement by using heterogeneous reward functions that include progress estimators.
This accelerates learning but at the potential cost of biasing the learnt solution. Millán, on the
other hand, attempts to bolster the reinforcement learning approach with basic “reflexes”, to
make them safer during the initial learning phase. The reasoning is that reinforcement learning
algorithms act randomly when they encounter states that they have no information for. Millán’s
approach is most similar to the “lazy initialisation” method developed in this work.

Learning the initial values is similar to the supervised teaching approach suggested by
Lin [77]. Lin’s approach differs in that the supervision is provided in the form of a single
trial or a small set of example trials, whereas here a behaviour is used to perform the super-
vision and “teaching” trials can be generated automatically. Lin points out that this type of
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mechanism has a more significant effect on the learning as the complexity of the task increases.
In particular, Lin [76] demonstrated an example where a recharge station docking manoeuvre
could not be learnt without the assistance of a supervised example trial. If a number of teaching
trials were provided, the task could be learnt quite rapidly.

Another approach in this vein is given by Maclin and Shavlik [82], who developed a simple
language to allow advice to be passed to the learning agent. An advantage of their scheme is
that advice can be passed to the agent during learning. The reinforcement learning algorithm
used is connectionist Q-learning [103], and so the action-values function approximator is a neural
network. The advice given is integrated into the neural network, essentially increasing the value
associated with state-action combinations suggested by the advice. In comparison with the
initialisation approaches in this chapter, Maclin and Shavlik’s approach does not attempt to
find realistic action-values for the advice provided and is quite specific to neural networks as
the function approximator. Finding realistic action-values for state-action pairs is important
because (a) overly positive estimates will need to be corrected by the reinforcement learning and
(b) overly positive estimates for particular actions may unnecessarily delay the investigation of
other actions.

4.7 Summary

The learning approach described in this chapter formulates behaviour-based tasks as a set of
Markov Decision Process problems. It assumes that a behaviour-based breakdown of tasks
has already been performed, but it also influences the way that breakdown should occur. The
potential for a large number of highly specialised modules being developed can be avoided by
making use of symmetrical characteristics of the behavioural problem.

The learning process is an iterative one, that necessarily allows for tuning of the specification
of what is to be learnt. Learning takes place in a simulated environment but final validation
occurs in a real one.

The second part of this chapter examined two types of initialisation for the learning algo-
rithm. One for tabular Monte Carlo algorithms that can take a policy as a starting point, and
four variants for initialising the action-value function for use with linear Sarsa(λ) and a function
approximator. The intuitive basis for this approach is that if a hand-coded behaviour already
exists, this should provide useful a priori information and hopefully avoid any extensive exami-
nation of policies that do not perform at least as well as the hand-coded one. Another potential
advantage is that performance improvement over the hand-coded behaviour should occur imme-
diately, rather than having to wait an indefinite number of runs before finding a policy that is
better.



Chapter 5

Experimental Overview

The previous chapter developed a process for learning new behaviours based on the Markov
Decision Process model and proposed an extension to make use of the a priori information
that is typically available; that is, a hand-coded behaviour. This chapter gives an overview
of the physical experiments used to support the main hypothesis of this work. That is, that
behaviours learnt in the manner described in the previous chapter yield better performance not
only in simulation, but also with the physical robot.

The experimental evaluation consists of three case studies: the efficient movement task,
the task of turning the ball, and the task of kicking the ball off the wall. These tasks were
chosen because all three were critical to the performance of the RMIT United RoboCup robot
soccer team and because they are tasks for which it is difficult to achieve optimal performance
through hand-coded behaviours. The tasks are all self-contained, and their performance can
be measured without reference to other behaviours. Also the three tasks have varying levels of
complexity, with the efficient movement task being the simplest, the “turn ball” task requiring
more sophisticated control, and the “off wall” task having the most complex state space.

5.1 Measuring Performance

Performance is measured by looking at the amount of reward accumulated over an episode.
Reward is defined according to a reward function that is specified as part of formulating the
problem as a Markov Decision Process. One problem with this measure is that if the reward
function is “shaped” to improve the learning rate, then the reward function may not exactly
correspond to a true measure of the performance of the behaviour. In this case, it is necessary
to look at fundamental properties such as the amount of time taken per episode, or the success
rate. To avoid this problem, most reward functions used in this thesis are not shaped. An
exception to this is the reward function used for the turn-ball task in chapter 7 on page 93. It
is “shaped” by rewarding partial success. In this case, other factors, such as the overall success
rate, and the time taken for successful turns need to be examined.

In reinforcement learning, the accumulated reward for an episode starting at a particular
state s, while following policy π, corresponds to the value of that state, V π(s). A policy π1 is
at least as good as another, π2, if

V π1(s) ≥ V π2(s), (5.1)

for all s ∈ S. When comparing two policies experimentally, it is not usually possible to examine
the value obtained from all possible states. Instead, it is necessary to select a set of test states
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T where T ⊂ S. The elements of T are unbiased random samples of S. If V π1(s) ≥ V π2(s) for
all s ∈ T , then this provides evidence to support the hypothesis that the policy π1 is at least as
good as policy π2, the amount of support being dependent on the cardinality of T .

Note that this assumes each element of S is just as likely as any other. This may not
necessarily be the case. For example, if a component of the state were the robot’s wheel speeds,
some wheel speeds would tend to be less likely in real situations. For example, during a robot
soccer game, the robot would only rarely reach top speed, but might often be stopped. This
factor is ignored here.

A weaker form of comparison between two policies involves looking at the sum of values over
a test set. That is, π1 is better on average than π2 if,

∑

s∈T

V π1(s) >
∑

s∈T

V π2(s). (5.2)

This corresponds to saying that policy π1 may not be better in every respect, but that the
average performance can be expected to be better, under the assumption that the set of states
seen during an episode starting from a state in T is representative of initial states seen in normal
operation.

In a real environment, it is not always possible to produce a particular start state exactly.
Therefore, a compromise is to randomly select the start state. In this case, the above equation
changes to,

∑

s∈T1

V π1(s) >
∑

s∈T2

V π2(s), (5.3)

where T1 and T2 are independent, randomly selected subsets of S. Statistical methods such as
a Student t-Test can be used to test the hypothesis that the populations for V π1 and V π2 have
different means, given equation (5.3). This does not guarantee that policy π1 is at least as good
as π2 for all possible states. It does, however, support the idea that the average performance of
π1 will be better than π2, assuming that actual selection of initial states is uniform over S.

In the physical robot experiments that follow, only the efficient movement task experiments
make use of same test set comparisons (5.2), while the other two tasks are based on a comparison
of two independent test sets (5.3). For the efficient movement task, the starting conditions
include the speed of the wheels and the relative position of the target. These conditions were
reproduced by causing the robot to accelerate to the desired velocities for one second and then
resetting the coordinate system before starting the behaviour.

For the turn-ball task, the starting conditions include the position and velocity of the ball
and the angle with respect to the target. Rather than try to reproduce exact ball starting
positions, the ball was rolled slowly towards the robot, and the behaviour started when the ball
was within range. That is, close enough for the behaviour to be in context and for it to take
control. The robot was always stopped at the start of each episode.

For the off-wall task, the starting position includes the position of the robot with respect to
the ball, the distance from the wall to the ball and the speeds of the robot and the ball. Starting
positions were generated by positioning the ball near to the wall, and then using a movement
behaviour to move the robot to a point next to the ball and about 0.5 metres distant from the
wall. After each kick, if the ball was too far away from the wall, the robot waited until the ball
was manually moved close to the wall, and then restarted the cycle by moving next to the ball.
This approach of moving next to the ball has the advantage that it is selecting test cases from
the intended population. Thus the performance estimate will be more realistic than if the test
cases were selected arbitrarily.
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Figure 5.1: Robot used for experiments. Components include: (1) a Pentium II laptop, (2)
a battery unit, (3) fingers for manipulating the ball, (4) a kicking device, which is normally
retracted, (5) LED status lights, micro-switches, and an RS232 connector, (6) 98 millimetre
diameter custom wheels, (7) Teflon skid pads (underneath), (8) vision digital signal processor,
and (9) a Pulnix CCD Camera

5.2 Physical Test Environment

The physical robot tests were performed using a robot that had previously been used by RMIT
United during the RoboCup 2000 competition. This robot is shown in figure 5.1 and was custom
built for RoboCup by staff at RMIT University. The communications interface to the robot is
roughly based on the Pioneer 1 robot produced by ActivMedia. The position and velocity of
each wheel is detected using shaft encoders attached to the gearbox driving each wheel. This
information is integrated to find the relative location of the robot. Localisation based on shaft
encoders can be unreliable, because wheels tend to slip, even on high friction surfaces.

For the first two tasks, the encoder information was accurate enough to obtain relative posi-
tion data during the short manoeuvres attempted here. To test this, the robot was commanded
to return to its start position and heading after each manoeuvre. During the tests, the robot re-
turned to its starting point with a small positioning error (usually no more than 10 centimetres)
and a medium heading error (typically about 15 degrees).
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The flooring of the test environment is carpeted as this is most similar to the robot soccer
target environment.

5.3 Experiment Plan

The experiment plan is summarised in figure 5.2 on the facing page. The three tasks, efficient
movement, “turn ball”, and “off wall” are dealt with in chapters 6 on page 75, 7 on page 93, and 8
on page 113, respectively. For each task, there are some experiments performed in a simulated
environment and some in a real environment with a physical robot. For the efficient movement
algorithm, two hand-coded (rmit and cmu) and three learnt (mces, mcsoft and sarsa) behaviours
are compared. In addition, for the learnt behaviours, policy initialisation is also examined for
the Monte Carlo based learning algorithms and value initialisation for the Sarsa(λ) algorithm.
Initialisation mechanisms are only examined in the context of the efficient movement task. In
the real environment, the behaviours learnt with initialised Monte Carlo-based algorithms are
tested against both a hand-coded behaviour and a behaviour learnt using Sarsa(λ), without
initialisation.

The subsequent two tasks only examine Sarsa(λ) as the larger state spaces required by these
problems made the use of a discrete coding difficult. For the “turn ball” task, two additional
factors are considered. The first is the effect of forward prediction of the state. That is, rather
than showing the behaviour the state signal as at the last sensor update, a forward estimate
of the state signal is performed and passed to the behaviour. Forward estimate times of 0.1
second (predict 0.1s) and 0.2 seconds (predict 0.2s) are tested in the real environment, alongside
no forward estimation (no prediction). Another issue that is examined in the context of the
“turn ball” task is the effect of continued learning versus a frozen or fixed behaviour. In other
experiments shown here, the behaviour has been frozen and left unchanged during test runs on
the real robot. A set of additional experiments are examined in the context of “turn ball” that
continue to use the Sarsa(λ) algorithm during runs on the real robot.

The final task, “off wall”, is examined in terms of the relative performance of the hand-coded
(rmit) and learnt (sarsa) behaviours.

5.4 Related Work

Wyatt et al. [130] provide some guidelines for the design of robotic experiments when testing
reinforcement learning. Specifically, they recommend using both external and internal evalu-
ation. The main difficulty that they try to address by this is that a poorly designed reward
function may lead to poor behaviours that, nevertheless, give apparently good reward results.
To avoid this problem in this work, qualitative aspects are included in the final evaluation of
the behaviours.

5.5 Summary

This chapter introduced the common characteristics of the experimental environment, and the
basis for distinguishing behavioural performance. The main measure of behavioural performance
is quantitative and based on the reward function. However, it is also necessary to consider
qualitative aspects, such as whether or not the behaviour was the one desired. This additional
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Figure 5.2: Experiment plan. Overall, the experiments are divided into three different be-
havioural tasks. Each task involves some simulated and some real experiments. These are then
broken down into behaviour instances and then variations on the testing of these behaviours.
Refer to the text for a description of the abbreviations used in this figure.
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consideration avoids the possibility that the generated behaviour is merely one that manages to
get a high reward, rather than one that is well suited to the task.



Chapter 6

Efficient Movement Task

This chapter is the first of three that look at experimental evidence in support of the hypoth-
esis that it is possible to produce better performing behaviours using reinforcement learning
than with hand-coded behaviours. In this chapter, the problem of efficient autonomous robot
movement is posed, and solutions produced using various algorithms. Posing of the problem
is broken down into “what the problem is” and “why it might be worth solving”. In order to
apply machine learning techniques, it is then necessary to define what the robot can perceive,
and what actions it can take. The solution is tested using a set of experiments in both real and
simulated environments.

The efficient movement problem is a question of how to cause a two-wheeled robot to reach
a fixed target within the minimum amount of time. The target can be either an actual object,
or it might be an intermediate destination. To keep this problem simple, it is assumed that
there are no obstacles that need to be negotiated. However, it is not assumed that the robot is
initially stationary, and it may be moving in an arbitrary direction at the start of the episode.

In some robotic problems of this sort, it is necessary for the robot to have a particular velocity
and / or heading at the end of the movement. The simplest version is where the final heading
and velocity are arbitrary, and this is the version that is used here.

6.1 Motivation

Previous work on efficient movement behaviours for mobile robots was surveyed in section 2.3 on
page 17. Of the different techniques examined, the basic movement behaviour from Bowling [22]
is both simple and efficient, and will be examined further. This behaviour is referred to here as
cmu-move-to after the CMUnited RoboCup team that it was used by.

Bowling’s approach and other similar smooth motion approaches are more efficient than
approaches that involve stopping before turning, especially when handling a moving target, but
it is not clear how close to optimal they are and a much more efficient movement behaviour
may exist. An optimal behaviour would use the minimum time to reach the target. Optimal
performance could be defined in many ways. For example, it might be expressed in terms of
minimising energy consumption, or maximising wheel traction. For the purpose of this case
study, however, optimal performance is defined in terms of the time taken.

When producing behaviours for the RoboCup 2000 event, the RMIT United team found that
the performance of Bowling’s movement behaviours were unsatisfactory on their robots. The
team tested several other approaches, eventually settling on a simple function relating angle
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The rmit-moveto behaviour takes as input the current robot position (x, y) and heading φ, and
calculates the next set of wheel velocity commands to get to the target at (xp, yp).

1. (Forward estimate.) From the current position (x, y) and heading φ, forward predict
robot’s position (x′, y′) and heading φ′ at time t + 0.2 seconds, based on most recent
commands (ul, ur).

2. (Find relative angle to target.) θ ← arctan
yp−y′

xp−x′ − φ′

3. (Normalise angle.) Add or subtract 2π to/from θ so that it is in the range [−π, π]

4. (Find Euclidean distance to target.) d←
√

(xp − x′)2 + (yp − y′)2

5. (Determine speed and angular velocity.) Stop and turn left if the angle is large and positive.
Stop and turn right if angle is a large negative. Move forward and turn towards target
otherwise.

(a) (Turn left.) If θ > π
4
, (v, ω)←

(

0, π
2

)

(b) (Turn right.) If θ < −π
4

, (v, ω)←
(

0,−π
2

)

(c) Else (v, ω)←
(

1, bound
[

Kθ
d

,−π
2
, π

2

])

K is a steering constant, which can be adjusted to control the turn rate, and was set to 2
for all trials.

6. (Convert to wheel velocities.) If S is the distance between the two wheels, the target wheel
velocities are:

(a) ul ← v − Sω
2

(b) ur ← v + Sω
2

Algorithm 9: The rmit-move-to behaviour.

to the target to the angular velocity. A key addition to this approach was to forward predict
the robot’s motion and to calculate the relative angle to the target based on this. The forward
prediction compensates for the time lag, or latency, between the reception of sensor data and
the action determined on the basis of that data taking effect.

6.2 Hand-coded Algorithms

A simplified version of the behaviour used by RMIT-United during RoboCup 2000 is referred
to here as rmit-move-to and is shown in algorithm 9. The full behaviour also included collision
avoidance mechanisms, which have been removed as they are not relevant to this task as specified.
Also note that in step 2, the arctan function is implemented using the Java atan2 function, which
correctly calculates the angle for all quadrants. The algorithm for the CMUnited RoboCup
small-league team, or cmu-move-to was given as algorithm 1 on page 17.

The two behaviours discussed above, cmu-move-to and rmit-move-to, form a benchmark
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for what can be done with hand-coded movement behaviours. To proceed with learning a new
behaviour to perform this task it is first necessary to define the state, the set of available actions,
the simulation approach and the reward function.

6.3 State Representation

Due to the simplicity of the task, it is possible to reduce the robot’s state to four variables, as
follows,

〈d, θ, vl, vr〉.

These are: the distance to the target, d, the angle to the target from the forward heading of the
robot, θ, and the velocities of the left and right wheels, vl and vr respectively. It is not necessary
to know the absolute position of the robot, because the position can be sufficiently inferred from
the distance and angle to the target. If the task required the robot to end the motion facing a
certain direction, then it might be necessary to include the robot’s heading relative to this.

For the purpose of this task, a state is a terminal state if and only if the distance to the
target is less than 0.3 metres. Allowing for a large margin for error in this way means that the
robot is less likely to “fuss” around unnecessarily at the end of the motion, and more likely to
shoot through the target area at high speed. This is important if the target is merely a step on
the way to some other destination.

As described in section 4.4.1 on page 52, prior to encoding the distance either in tabular or
tile coding, it is first transformed so that any distance maps to the range [0, 1).

6.4 Action Representation

Having determined how the state should be represented, it is now necessary to define the set of
actions that can be taken.

The robot control system allows the target speed of each wheel to be controlled independently.
Independent control of each wheel speed means that the robot can be made to turn on the spot,
to go in a straight line, or to turn in an arc. It should be kept in mind that it is not necessarily
possible for the control system to produce a desired velocity immediately as the robot may need
to accelerate or decelerate. Due to variations in conditions, it is also not possible to keep to a
desired velocity exactly even after it has been achieved. Therefore, velocity commands to the
robots are in terms of “set points” or target values that are used by the control system to work
out how to adjust the power to the wheels. The left and right wheel velocity set points are
denoted as ul and ur respectively.

Most algorithms for solving Markov Decision Processes (as discussed in chapter 2), including
the ones used here, require that it is possible to enumerate all actions available in any particular
state. It is therefore necessary to decide on a set of possible velocity set points (or actions)
for each wheel. For the purpose of the following experiments, 5 wheel velocity set points were
used, evenly distributed over the range [−2, 2] metres per second. This range is based on the
limitations of the robot used in the experiments. This gave a total of 25 possible actions over
both wheels. Note that the hand-coded behaviours return target wheel velocities directly and
so they are not limited to particular values but can use continuous values.
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R(s0, a0, s1) = −1

R(s1, a1, s2) = −1

R(s2, a2, s3) = −d

d

Figure 6.1: How the reward function applies to an example episode. The target area is shown
as a green dashed circle. The episode consists of three transitions, the final transition receiving
a reward −d, or the distance in metres to the centre of the target. In this case, the distance on
the last step is 0.25 metres, so the last reward is −0.25, and therefore the total reward for the
episode is −2.25.

6.5 Reward Function

The reward function (6.1) simply returns −1 for all steps, except for the last step where the
reward is the negative of the distance left to go.

R(s, a, s′) =

{

−d if s′ is a terminal state
−1 otherwise

(6.1)

where d is the distance to the target in metres. Since the state is terminal, this can be no greater
than 0.3. An example of how this reward function works is shown in figure 6.1.

Since the learning algorithm tries to maximise the reward per episode, this reward function
encourages behaviours that get to the target as quickly as possible. By including a small penalty
based on the final distance to the target, behaviours that more accurately intercept the target are
encouraged. It is not necessary for the robot to stay at the target point, so training is episodic,
with the episode ending as soon as the target area is reached. The rate at which reward decays,
γ, is set to 1, meaning no decay. This has the effect that reward received at the end is just as
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Table 6.1: Parameters used to discretise the state and action variables for Monte Carlo methods.

Variable Minimum Maximum Intervals Range Resolution

f(d) 0 1 21 1.0 0.05
θ −π π 40 2π π

20

vl −2 2 21 4 0.2
vr −2 2 21 4 0.2
ul −2 2 5 4 1.0
ur −2 2 5 4 1.0

important as reward received at the start. Since it is possible to generate a behaviour that never
reaches the target, it is necessary to set an upper limit on the number of steps. For this task
1000 steps are allowed. This limit is chosen because it is well in excess of the number of steps
required, even for behaviours that are very inefficient.

Although this reward function is quite easy to understand, and the total reward has a simple
correspondence with the time taken to achieve the task, one difficulty with it is that it is not
possible to decide, from the accumulated reward, between two policies that do not cause the
robot to reach the target.

6.6 Learning a Policy

Three different algorithms were used to learn a policy to solve the efficient movement problem:
Monte Carlo ES (see algorithm 2 on page 24), Monte Carlo ε-soft On-Policy (see algorithm 3
on page 26), and Sarsa(λ) (see algorithm 4 on page 30). The two Monte Carlo algorithms
are different in the way that they explore. The Exploring Starts variant of the Monte Carlo
algorithm randomly chooses the first step, whereas the ε-soft On-Policy variant chooses an
action randomly every so often. The frequency of randomly chosen actions is based on ε. For
the following experiments, ε was set at 0.1. Sarsa(λ) is a variant of the Temporal Difference
algorithm, TD(λ), that is suited to control problems. For the following experiments, a value
of 0.7 was used for λ. More information about this algorithm can be found in section 2.4.6 on
page 27.

An important design decision when implementing these algorithms is how to represent the
action-value function estimate. One approach is to assume that the state is discrete, and to
represent the action-value using a table, with one entry per state-action combination (see sec-
tion 4.4.3 on page 55). This is the approach used with the Monte Carlo algorithms. The
parameters used to discretise each variable of the state and action are given in table 6.1.

Another approach to representing action-values is to use a tile-coding function approximator
(see section 2.4.5 on page 25) with Sarsa(λ) (see algorithm 4 on page 30). The parameters used
to define the tile coding are shown in table 6.2 on the next page. Note that in this case, the
range for f(d) is limited to [0.42, 0.76], which corresponds to a range for d of [0.3, 1.0]. The range
was cropped to reduce memory requirements of the tile coding data structure. This cropping
was also based on an intuition that the most interesting characteristics of the behaviour occur
when the target is within about a metre. Also, the cropping does not prevent the behaviour
from being used for larger distances, and it seems likely that performance will not be degraded
significantly by this simplification.

These algorithms typically begin by assuming that the action-value function or table has
been initialised to arbitrary values. In this work, an alternative is tried. For the Monte Carlo
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Table 6.2: Parameters used to define the Sarsa(λ) tile coding for the state and action variables.
This tiling was repeated 40 times at randomly assigned offsets.

Variable Minimum Maximum Intervals Range Resolution

f(d) 0.42 0.76 6 0.34 0.067
θ −π π 6 2π π

3

vl −2 2 5 4 1.0
vr −2 2 5 4 1.0
ul −2 2 5 4 1.0
ur −2 2 5 4 1.0

algorithms, the initial policy is set to the cmu-move-to motion behaviour. This technique is
described in section 4.6.1 on page 61. For Sarsa(λ), cmu-move-to is also used, but this time
to initialise the action-values. Four different variants are tried and these are described in sec-
tion 4.6.2 on page 63.

6.7 Simulated Environment

The simulated environment for this task is simple. It consists of an infinite space and a single
simulated robot. The kinematics of the robot are simplified to allow quick calculation. For
simplicity, the two wheels are treated as two independently driven wheels, each sharing half the
full weight of the robot. The change in wheel position is calculated as though it travels along
a straight line, and then the overall robot movement is worked out by the distance travelled by
each wheel. Friction is incorporated into the wheel movement calculation by using a constant
friction factor that acts against the direction of movement. This approach is only a rough
approximation of the true kinematics of the robot. A detailed description of this part of the
simulation is given in appendix A on page 133.

In the simulated environment, a standard set of 200 randomly generated test scenarios are
used. The term scenario denotes the initial state of the robot and its environment, essentially
describing the current wheel velocities and the relative location of the target. The Monte Carlo
algorithms were run for 100 million learning episodes, and tested using the test scenarios every
million. Sarsa(λ) was run for 10 million learning episodes and tested every 1000 episodes. Note
that the testing is independent of the learning agent and the policy is not updated during the
testing trials.

6.8 Physical Test Environment

The physical tests were divided into 20 scenarios. As noted previously, each scenario defines an
initial velocity for each wheel and a relative target location. At the start of each test, the robot
was commanded to achieve the start velocities for the scenario, and given one second to do so.
After this, it then repeatedly reads the current robot state, and executes the behaviour until
the target point is within 0.3 metres. Each scenario was tried 20 times with each behaviour.
The behaviours tested were the hand coded behaviours, cmu-move-to, and rmit-move-to, and
the learnt behaviours mces, mcsoft, and sarsa.

To try to eliminate any effect from battery charge levels, the tests were randomly ordered
based on a coin toss. Battery charge did not seem to have any effect, except when the battery
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Figure 6.2: Policy performance during learning for Monte Carlo ES (mces) and Monte Carlo
ε-soft On Policy (mcsoft) algorithms. Both algorithms were initialised using cmu-move-to.

was extremely low. Therefore, the batteries were always recharged prior to them reaching this
level.

6.9 Simulator Results

The relative performance during learning of the two Monte Carlo algorithms is shown in fig-
ure 6.2. Note that the test reward corresponds to the average reward over a standard set of
200 randomly generated test cases. The initial performance for both algorithms corresponds to
the performance for the hand-coded behaviour cmu-move-to since that behaviour was used to
generate the initial policy. The actual initial performance is slightly less than cmu-move-to’s
because the learnt behaviours output a discretised set of actions. Improvement stops after about
20 million episodes, but the Monte Carlo ES (mces) variant produced a slightly better result.
Learning for both algorithms completed in 3 to 4 hours on an Athlon 1GHz PC.

As shown in figure 6.3 on the following page, Sarsa(λ) learns a policy with fewer episodes.
However, the overhead per episode is much larger, and the total learning time for 10 million
episodes took around 40 hours or about 10 times as long as it took to process 100 million episodes
using either Monte Carlo algorithm.

The reason for the downward trend, evident in the graph after about 2 million trials, is not
clear, but possibly indicates some divergent effect in the underlying function approximator. For
the function approximator to converge, updates to the weights (components of ~θ) should get
smaller and smaller. However Baird [13] has shown that unless the updates are constrained
in a particular way, the function approximator cannot be guaranteed to converge and updates
may get larger rather than smaller. More recently, Gordon[50] has shown that linear Sarsa(0)
converges to a region implying that although it will not necessarily converge, it also will be
limited in how far it diverges. Current convergence results for Sarsa(λ) were covered in more
detail in section 2.4.7 on page 29.
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Figure 6.3: Policy performance during learning for Sarsa(λ). The initial test reward, not shown
on this graph, was less than −500.

6.9.1 Monte Carlo Policy Initialisation

The results presented for Monte Carlo algorithms so far have made use of the policy initialisation
approach presented in section 4.6.1 on page 61. The cmu-move-to behaviour was used to produce
the initial values in all cases. The question remains about whether or not there is an advantage
to using this approach compared with starting with a random policy. An obvious down side
to using policy initialisation is that it is necessary to have an initial behaviour to start from.
An additional concern might be that providing an initial behaviour would bias the learning
algorithm towards behaviours that were similar. For example, if the original behaviour tended
towards forward motion rather than backward motion, as cmu-move-to does, then it might be
expected that this would carry through to the learnt behaviours if they were initialised from it,
causing them to get stuck in a local minima. Figure 6.4 on the next page shows the performance
of Monte Carlo ES over the first 5 million learning trials with and without policy initialisation.
This graph shows how the use of policy initialisation is roughly equivalent to skipping over the
first 2 to 4 million trials.

Figure 6.5 on the facing page shows the performance, with and without policy initialisation,
for the Monte Carlo ε-soft On Policy algorithm over the first 20 million learning trials. During the
first 10 million trials, the performance of the version without policy initialisation jumps about,
and as with Monte Carlo ES without policy initialisation, performance actually decreases during
some stages of the learning. A likely explanation is that in the case where no policy initialisation
is used, the action-values used to decide which action to take may be arbitrary.

The results for the two Monte Carlo algorithms imply that there is no long term disadvantage
to using policy initialisation. In fact, the learnt behaviours use reverse in many cases where cmu-
move-to would use forward movement.

The amount of elapsed time required for a certain number of trials was decreased by the use
of policy initialisation for the Monte Carlo algorithms. Monte Carlo ES took 3 hours with policy
initialisation to perform 100 million trials, whereas it took 5.5 hours to perform the same number
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Figure 6.4: Policy performance during learning Monte Carlo ES (mces) with (init) and without
(no init) policy initialisation. Note that the first test reward mces (no init) was less than
−600 and thus off the scale used here. Also note that sampling is only performed every million
episodes.
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Figure 6.5: Policy performance during learning Monte Carlo ε-soft On Policy (mcsoft) with (init)
and without (no init) policy initialisation. Note that the first test reward mcsoft (no init) was
less than −600 and thus off the scale used here. Also note that sampling is only performed every
million episodes.
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Table 6.3: Elapsed times with and without policy initialisation for Monte Carlo ES (mces) and
Monte Carlo ε-soft On Policy (mcsoft).

Algorithm Trials Elapsed time (minutes)
(no init) (init)

mces First 106 27 3
mces First 108 335 179

mcsoft First 106 5 3
mcsoft First 108 216 205

of trials without policy initialisation. Most of the additional elapsed time when not using policy
initialisation occurred early on. For example, with policy initialisation, the first million trials
took 3 minutes, whereas without it, the first million trials took 27 minutes. This difference is
due to the large number of steps required per trial when the policy is poor. Interestingly, this
problem does not occur with the Monte Carlo ε-soft On Policy. Policy initialisation only makes
a small difference to the first million trials and the total training time for 100 million trials are
relatively unaffected. It seems likely that this difference, for Monte Carlo ε-soft compared with
Monte Carlo ES, is due to the addition of exploration during each episode, rather than just at
the start. Certain policies will cause Monte Carlo ES to loop through the same sequence of
states indefinitely, whereas Monte Carlo ε-soft will occasionally choose an action randomly and
escape the loop.

Elapsed times with and without policy initialisation are summarised in table 6.3. All simu-
lation trials were performed on an Athlon 1GHz PC.

6.9.2 Sarsa Policy Initialisation

Four different approaches to Policy Initialisation for linear Sarsa(λ) were tested using the sim-
ulated environment and compared with performing no initialisation. Section 4.6.2 on page 63
describes each of these approaches. The base case of performing no initialisation trials was
denoted no-init. The most basic form of initialisation tried was to use the Monte Carlo ES algo-
rithm to initialise the tile coding weights. This was denoted mces-init. With this, and all other
initialisation techniques, cmu-move-to was used as the initialisation behaviour. A variant of this
is to initialise actions that are not prescribed by the behaviour to a value one less than the value
estimated for the prescribed action. This variant is referred to as minus-one-init. Monte Carlo
approaches estimate the value differently to Sarsa, and so another possibility is to use Sarsa(λ)
directly, but using a fixed, but soft, policy corresponding to the behaviour. Using Sarsa for
initialisation is denoted sarsa-init. A final variant, denoted lazy-init, requires no initialisation
trials, but instead initialises weights when they are first referred to. The discount factor γ was
1 as this corresponds to the task being learnt. The learning rate α was 0.01 for mces-init and
sarsa-init and 0.2 for minus-one-init. Also, sarsa-init used an eligibility decay λ of 0.7 and an
exploration factor ε of 0.1.

To speed up the algorithms for the purpose of this evaluation, a smaller tile coding was
used than that defined in table 6.2 on page 80. The tile coding consists of 3 tiles per state
variable with 10 tilings. The basis for differentiating the various algorithms is to run 100 000
initialisation episodes, followed by 30 000 Sarsa(λ) trials. After this, the resulting policy is tested
using the standard 200 test trials. This process was repeated 10 times for each initialisation
approach. Figure 6.6 on the facing page shows an example of the test reward performances



CHAPTER 6. EFFICIENT MOVEMENT TASK 85

-40

-35

-30

-25

-20

-15

-10

0 5000 10000 15000 20000 25000 30000

T
es

t
R

ew
a
rd

Trials

no-init
mces-init

minus-one-init
sarsa-init
lazy-init

Figure 6.6: Simulation test reward during first 30 000 Sarsa(λ) trials using various initialisation
approaches. The graph shows the results for a randomly selected run for each initialisation
method.

Table 6.4: Mean simulation test reward after 100 000 initialisation trials followed by 30 000
Sarsa(λ) trials. In the case of no-init and lazy-init, no initialisation trials were performed,
and the test reward is after just 30 000 trials. Ten runs of each variant were used to produce the
mean value.

Algorithm Mean reward Standard deviation

no-init −12.6 0.51
mces-init −11.9 0.45

minus-one-init −11.5 0.50
sarsa-init −11.4 2.2
lazy-init −24.4 7.9

for each approach during the first 30 000 trials. The results of all 10 runs of each approach
are summarised in table 6.4, with the statistical significance of the difference in these means
examined in table 6.5 on the following page.

The most distinct result is that the lazy initialisation approach clearly is not as good as any
other, including using no initialisation at all. Although the standard deviation of this approach
is large, the best result is only −15.5, which is worse than the worst result produced by no
initialisation. Lazy initialisation is also the most complex approach, requiring that the tile
coding algorithm specifically cater for detecting uninitialised values.

Ignoring for the moment the issue that initialisation algorithms have the advantage of an
additional 100 000 trials, the best approach appears to be either minus-one-init or mces-init.
Although sarsa-init produces the best mean, it has a large standard deviation in the test reward
produced after 30 000 trials. From the results obtained, the mean produced through sarsa-init
cannot be said to be significantly better than no initialisation, whereas the mean test rewards
for behaviours initialised with mces-init and minus-one-init are significantly better than that
produced without initialisation. Since mces-init produces this improvement in a simpler fashion
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Table 6.5: Analysis of t-Test statistic for effect of initialisation after 30 000 trials, assuming
unequal variances, and showing the p-value for a one-tail test. P-values less than 0.05 are shown
in bold. These correspond to a 95% confidence level that the null hypothesis, that the two
populations have the same mean, can be rejected.

no-init mces-init minus-one-init sarsa-init

mces-init 0.0018
minus-one-init 0.00012 0.074

sarsa-init 0.069 0.28 0.45
lazy-init 0.00052 0.00035 0.00029 0.00024

than minus-one-init, it would seem that mces-init was the initialisation scheme of choice.

However, a more realistic assessment must include the additional cost of the extra 100 000
trials plus the requirement that a hand-coded behaviour needs to be available to perform this
sort of initialisation at all. To assess this, Sarsa without initialisation was continued for an
additional 100 000 trials. The mean test reward produced after a total of 130 000 trials, repeated
10 times, was −9.88 with a standard deviation of 0.56. A t-test established that this result was
significantly greater than that produced by mces-init with a p-value of 4.7× 10−8. On the other
hand, for the simulation environment used here, the time to process 130 000 trials is around
13 minutes, compared with mces-init, which takes around 6 minutes. After 6 minutes, Sarsa
without initialisation had performed around 50 000 trials, and had a test reward of about −11.0.
This indicates that even when using time as the basis for comparison, mces-init performs roughly
as well as Sarsa(λ) without initialisation. This indicates that there are no significant benefits to
initialising values prior to running Sarsa using a hand-coded behaviour. In addition, there are
significant costs, which include the cost of providing a hand-coded behaviour to initialise with.

6.10 Physical System Results

Each different version of the movement behaviour was tested with 20 different, randomly gen-
erated scenarios or start conditions. The scenario defines the relative position of the target and
the initial speed and angular velocity of the robot. Two of these test cases (scenario numbers
0 and 18) were completely trivial as the robot was already close enough to the target location
prior to taking any action. As with the simulated environment, the episode ends when the robot
is within 0.3 metres of the target location.

Figure 6.7 on the next page shows the performance of each behaviour during the physical
tests. The hand-coded behaviours correspond to the behaviour developed by Bowling [22] for
the CMUnited RoboCup team (referred to here as cmu-move-to) and the movement behaviour
developed by the RMIT United RoboCup team (rmit-move-to). Also shown are the results for
behaviours learnt using the Monte Carlo ES (mces), Monte Carlo ε-soft On Policy (mcsoft),
and SARSA(λ) (sarsa) algorithms. The graph shows that the cmu-move-to behaviour had
much more variability in how it performed even when considering the same start conditions. In
comparison, rmit-move-to produced better results than cmu-move-to with little variability.

Table 6.6 on the facing page shows the average combined time to perform one run of each
of the 20 scenarios. The two Monte Carlo approaches gave the best results, with SARSA(λ)
close behind. The rmit-move-to behaviour performed reasonably well, but was not as good as
the learnt behaviours. The cmu-move-to behaviour, on the other hand, took around twice as
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Figure 6.7: Time to complete first 20 test scenarios for five different sorts of behaviours, on
the physical robot. The error bars show the minimum, maximum and average time taken by a
behaviour.

Table 6.6: Average total time to perform 20 test scenarios on the physical robot.

Behaviour Total time (seconds)

cmu-move-to 67.15
rmit-move-to 44.80

mces 34.23
mcsoft 33.90
sarsa 38.23



6.11. DISCUSSION 88

Table 6.7: Analysis of t-Test for behaviour time performance assuming unequal variances, show-
ing the p-value for a one-tail test. P-values less than 0.05 are shown in bold. These correspond
to a 95% confidence level that the null hypothesis, that the two populations have the same mean,
can be rejected.

cmu-moveto rmit-moveto mces mcsoft

rmit-moveto 4.43× 10−9

mces 1.02 × 10−11 7.95× 10−25

mcsoft 1.44 × 10−12 8.04× 10−16 0.62
sarsa 3.86 × 10−11 3.99× 10−11 8.48× 10−7 7.07× 10−6

long as the best learnt behaviours to perform the manoeuvres. Interestingly, the ranking of
rmit-move-to and cmu-move-to performance on the robot was the reverse of that predicted by
the simulator results (see section 6.11).

Note that the times shown in table 6.6 on the preceding page cannot be exactly compared to
the simulator test rewards as the test sets are not the same. Roughly speaking, multiplying these
values by − 1

2
will give an estimate of the average test reward. By this estimate, mcsoft produced

an average test reward of about −17 on the real robot. This indicates that the simulator gives
an underestimate of the amount of time that the real robot takes to move.

To examine the results statistically, a null hypothesis is posed that the performance of two
behaviours have the same means. The variances of the different behaviours are generally not
equal, and so a t-Test statistic assuming unequal variances is used, rather than a standard t-
Test. The statistical analysis results for the performance of each behaviour compared with each
other behaviour are shown in table 6.7. These results show a clear difference in the means for all
behaviours, with the exception of the two Monte Carlo methods. In other words, the difference
in times shown in table 6.6 on the preceding page is statistically significant, with the exception
of the difference between mces and mcsoft.

6.11 Discussion

Analysis of the motion caused by the learnt behaviours compared with the hand-coded ones
shows two main reasons for differences in performance: (a) the learnt behaviours change their
behaviour according to the current velocity of the robot, and (b) they move backwards when
it is more efficient to do so. In addition, the rmit-move-to behaviour performed well because
it specifically addressed latency that occurred in the physical robot. Since latency was not
simulated, the performance of rmit-move-to was artificially low on the simulator, just as the
performance of cmu-move-to was artificially high, leading to their ranking reversing when the
behaviours were transferred to the physical robot.

Figure 6.8 on the next page shows how cmu-move-to and mces handle scenario 1 in simula-
tion. In this scenario, the robot has a high initial forward velocity, but is heading away from the
target. The cmu-move-to behaviour ignores this and behaves as if the robot were still. It tries
to move backwards, turning in a clockwise direction to face the target. The mces behaviour
turns in a smooth arc towards the target.

The path chosen by mces for this scenario is very close to that found using A∗ search (shown
in figure 6.9 on page 90). The A∗ search solution was found using the same simulator but with
a 0.2 second decision cycle. This is in comparison to the rest of the experiments, which used
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Figure 6.8: Simulator example of scenario 1 using the cmu-move-to hand-coded behaviour above
and the Monte Carlo ES (mces) behaviour below. The starting point is shown in red and the
target area is shown as a green circle. The position of the robot and velocity of each wheel is
shown for each decision cycle. The wheel velocities are shown as arrows, with a larger arrow
indicating a greater velocity.



6.11. DISCUSSION 90

Figure 6.9: Scenario 1 solution found using A∗ search. This solution is based on a 0.2 second
decision cycle. Other experiments used a 0.1 second cycle.

a 0.1 second cycle. It was necessary to use a longer cycle time to reduce the search space, so
that a solution could be found with the memory available. The heuristic used for the search was
based on the number of steps taken if the robot was able to instantly face toward the target and
head towards it at maximum velocity. Since this will always be equal to or less than the number
of steps actually required, the search algorithm is admissible [80]. Therefore, the result of the
search is optimal for a 0.2 second cycle time. It seems likely that the optimal solution for a cycle
time of 0.1 seconds will be similar to that for a 0.2 second one, however it was not possible to
confirm this for all examples using A∗ due to the increase in computational complexity that this
entails. Note that the search result can only be considered optimal for the simulated robot, and
is not necessarily optimal for the real one.

When the behaviours are tested on the physical robot, the results are quite different for
the hand-coded behaviour. Figure 6.10 on the next page shows a trial of cmu-move-to on the
robot. In this case, the robot thrashes about on the spot for some time before moving towards
the target. One possible reason for this degradation in performance, in comparison with the
simulator, is that, on the physical robot, there is a time lag or latency between the robot sensing
its position and it effecting an action based on that information.

In comparison, figure 6.11 on the facing page shows that mces roughly maintains its perfor-
mance and follows a similar path when moved from the simulator to the physical robot. The
other learnt behaviours, mcsoft and sarsa, cause the robot to follow roughly the same curved
path as mces. The learnt behaviour seems to cope with the latency on the physical robot even
though this has not been simulated during the learning process. The learnt behaviour benefits
from altering its response when the angular velocity is high, and therefore is less susceptible to
over-correcting the heading, even when the sensor information is delayed.

The rmit-move-to behaviour (figure 6.12 on the next page) has a similar problem to cmu-
move-to in that it stops and turns. However, it has the advantage that it does not over correct
as much, and the path is much more direct.

The mces and mcsoft behaviours are primed with the cmu-move-to behaviour, and it is
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Figure 6.10: Physical robot trial for scenario 1 using cmu-move-to behaviour

Figure 6.11: Physical robot trial for scenario 1 using mces behaviour

Figure 6.12: Physical robot trial for scenario 1 using rmit-move-to behaviour
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therefore surprising to discover that although cmu-move-to tends to treat reversing situations
differently to forward movement situations that this distinction is lost in the learning process.
In other words, although the Monte Carlo algorithms were initialised based on cmu-move-to,
this did not cause them to get stuck in the local minima of moving forwards, when reversing
might be more efficient.

6.12 Summary

Latency, or the time delay between sensing and acting, is a significant problem for this robot
architecture. As the desired speed of the robot increases, the control latency becomes more and
more significant. Other robots of a similar class, such as the Pioneer 1, have similar latencies but
travel at slower speeds, and so the latency is not as critical a factor in the overall performance
of the robot. A chief cause of latency in this architecture is the narrow bandwidth connection
between the robot and the controlling laptop computer.

The poor performance of cmu-move-to may be due, in part, to the large control latency,
combined with the high movement speeds attempted. In comparison, rmit-move-to had better
performance, largely through the use of virtual sensors that predicted the future position and
speed of the robot, thus counteracting some of the effect of latency.

The learnt behaviours were all better again, despite not using virtual sensors, and without
latency being included in the simulator model used to learn the behaviour. Most of the im-
provement comes from allowing for the current velocity of the robot. Inclusion of this factor is a
natural outcome of ensuring that the Markov Property holds for the state. Further improvement
of the learnt behaviour may be possible by either including latency in the simulation, or by using
forward estimation in the world model.

Of the learnt behaviours, those developed using a Monte Carlo and discrete coding of the
state space had slightly better performance than those developed using Sarsa(λ) and tile coding
of a continuous state space. The Monte Carlo ones took less elapsed time to learn, but needed
more iterations. Since Sarsa(λ) requires fewer simulator iterations, as simulation complexity
increases, the advantage of using simpler algorithms, such as Monte Carlo, may decrease.

Various sorts of initialisation techniques were examined in the context of the simulated
environment. When using Monte Carlo methods with a tabular representation of the state-
action values, initialising the policy from a hand-coded behaviour produced a clear improvement
in policy performance until about 5 to 10 million episodes. After this point, performance was
comparable, indicating that there was no bias caused by initialising in this way.

When using Sarsa(λ) with a tile coding to represent the action value function, there appeared
to be some benefit to using initialisation if the cost of the initialisation process was ignored. The
cost, either in terms of trials or in terms of processing time, was significant and, if taken into
account, meant that there was actually a cost in using Policy Initialisation with Sarsa(λ).



Chapter 7

Turn Ball Task

In this chapter, a second experimental case study, based on the problem of turning with the
ball, is explored. This task is more complicated than the previous one, which looked at efficient
movement, because it involves both movement and interaction with another object. As with the
previous task, this is not a toy problem, but is based on real requirements for the RMIT United
RoboCup team. Also, as was the case in the previous task, the final evaluation of behaviours
are performed on a real robot.

A basic aim for a soccer playing robot is to move behind the ball, relative to the direction
of play, in order to kick it towards the goal. This can be achieved either by moving around the
ball, or by moving the ball. An excellent example of the former approach is provided by Jamzad
et. al. [65], who devised a special rotatable wheel configuration that allowed the robot to move
up to the ball, then move crab-like, pivoting around the ball. One difficulty with moving around
the ball, particularly for robots that cannot perform the manoeuvre while facing the ball, is that
the ball may move. Unless the robot has a moving camera or 360 degree vision, it will usually
lose sight of the ball while lining up on it. Losing sight of the ball means that movement to a
position relative to the ball may be unreliable. Even if the ball does not move while it is out of
sight, the success of the manoeuvre becomes dependent on the accuracy of the last sighting, and
specifically, the accuracy of the distance estimate, that is more prone to error than the estimate
of the relative angle.

One solution is for the robot to turn with the ball. This means that the robot uses its
“fingers” to push the ball in an arc. Figure 7.1 on the following page shows an example of
how this behaviour is intended to steer the ball so that it is lined up with the goal. According
to RoboCup Federation rules, robots cannot be designed to capture the ball completely, and
fingers, or other protrusions, cannot wrap around the ball. Any concavity in the shape must not
hold more than one third of the ball’s diameter (see figure 7.2 on the next page). Therefore, the
robot must nudge or guide the ball, while keeping it in its grippers. While it is possible to move
the ball in an arc without keeping it between the fingers, this task requires that the ball be close
to or between them. Dribbling the ball with a series of sideways kicks would be an option if
keeping close possession of the ball were not a requirement. The advantage of close possession of
the ball is that it protects it from attack by opponent players. This task is specific to RoboCup
but has features that are common to many robot manipulation problems that involve controlling
the position of an object without being able to control all of its degrees of freedom.

This chapter follows a similar format to the previous one. It starts with an examination of
the motivating factors. The problem is broken up into how states and actions are represented,
how the situation was simulated and the correspondence between states and reward. This is
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Figure 7.1: The desired behaviour for a robot intercepting and “turning” the ball. Note that this
diagram includes interception of the ball, which is a separate behaviour.

Figure 7.2: The maximum allowable concavity, according to RoboCup 2000 regulations, must
not exceed one third of the ball’s diameter.
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followed by details about how a behaviour was learnt, and the physical test environment used to
evaluate the learnt and hand-coded behaviours. Finally, an analysis of the results is presented.

7.1 Motivation

An inspiration for attempting to develop the behaviour with machine learning rather than code
it by hand, comes from the experience of attempting to hand-code the behaviour for the RMIT
United team for the RoboCup 2000 robot soccer competition. The main problem with the hand-
coded behaviour was that it required extensive tuning before it worked reliably. The hand-coded
behaviour operated by turning either left or right in a fixed arc while the ball was close and
almost straight ahead. When the ball was close but more to the side, the behaviour moved
the robot straight ahead, thus attempting to use the fingers to guide the ball more towards the
centre of the grasp. When the ball was out of the fingers, another behaviour moved up to the
ball, slowing as it got closer to avoid knocking it further away.

In preparation for RoboCup 2000, the RMIT United team spent much time testing and re-
tuning this behaviour. This effort was only partially successful. The movement tended to be
unresponsive and rigid. This was particularly noticeable when the robot was nearly losing the
ball from its grippers.

One possible reason for the lack of success with the hand-coded behaviour is that much more
sophisticated logic is required. It is not enough to simply tune the one turning speed that is
used under almost all conditions. Instead more factors in the state of the environment need to
be taken into account and a greater variety of actions used in response. However, there seems no
obvious way for a programmer to guess which states to differentiate and what actions should be
tried. In addition, when testing such a sophisticated behaviour, the programmer cannot easily
differentiate between those parts that failed and those that were successful. The need to develop
sophisticated behaviour, and the difficulty involved in developing it by hand, provide a central
motivation for attempting to learn robot behaviours.

Given that it is desirable to learn the behaviour, the next step is to define what will be
learnt. The first aspect presented here is the definition of how the state of the environment and
robot will be represented.

7.2 Hand-coded Algorithm

The algorithm for the hand-coded behaviour used by RMIT-United during RoboCup 2000 is
shown as algorithm 10 on the following page. The rmit-turnball behaviour attempts to turn the
robot in a small arc while keeping the ball in its fingers. The resulting behaviour can be used to
line up on a target. The difference between the angle to the ball and the angle to the target is
represented by α. The angle to the ball is θb and is derived from the relative position of the ball
(xb, yb). This behaviour sets the target wheel velocities vl and vr, which are calculated from the
desired velocity v and angular velocity ω. It also sets acceleration factors for the left and right
wheel al and ar. A larger factor is used on the left wheel when turning right, and vice versa.
This was found to help smooth the turn.
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1. If |θb| >
π
12

(If the ball is too left or right.)

(a) (Drive straight ahead slowly.) v ← 0.4, ω ← 0, al ←
1
13

, ar ←
1
13

2. (Else if target is on the right.) If α < 0

(a) (Turn right slowly.) v ← 0.4, ω ← − π
2
, al ←

1

9
, ar ←

1

13

3. Else

(a) (Turn left slowly.) v ← 0.4, ω ← π
2
, al ←

1

13
, ar ←

1

9

4. Convert speed and angular velocity to wheel velocities.

Algorithm 10: The rmit-turnball behaviour

T

α

xb

yb

Figure 7.3: Static components of the state representation for the turn ball task. T represents
the target. The line from the robot to the ball is at an angle α to the line from the robot to the
target T . The relative position of the ball is (xb, yb)

T .

7.3 State Representation

The state for this task can be represented by the vector

〈xb, yb, ẋb, ẏb, α, ωR, vR〉,

where (xb, yb)
T represents the position of the ball with respect to the robot, (ẋb, ẏb)

T denotes
the ball’s velocity, α represents the angle to the target, ωR is the robot’s angular velocity and
vR is its speed. These components are shown in figures 7.3 and 7.4 on the facing page.

The coordinate system for the ball’s position (xb, yb)
T and velocity (ẋb, ẏb)

T has the robot
at the origin and the X axis pointing in the forward direction of the robot. For this task, the
robot’s motion was represented by the forward velocity vR and the angular velocity ωR. There is
a straightforward mapping between these parameters and the left and right wheel velocities [35].
As stated previously, the difference between the angle to the ball and the angle to the target is
represented by α.
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ωR

vR

ẋb
ẏb

Figure 7.4: Dynamic components of the turn ball task. The ball’s motion is represented by the
vector (ẋb, ẏb)

T with respect to the current heading, whereas the robot’s motion is a combination
of scalar velocity vR along the line of the robot’s heading and angular velocity ωR. It is assumed
that the ball’s spin is negligible.

The dimensionality of the state is much greater than in the previous task, however the
amount of computation and memory required to learn the task can be reduced by restricting
the range of possible values for some of the dimensions. The behaviour’s activation condition
provides these limits. This behaviour is only active when the ball is between the grippers, and
this allows the range of xb and yb to be limited to values where this is the case. Specifically,
they can be restricted to 0 ≤ xb ≤ 0.4 metres and −0.235 ≤ yb ≤ 0.235 metres.

It is not necessary to consider the absolute position of the robot (or its heading) nor the
absolute ball position, because it is assumed that no other obstacles or reference points exist.
To avoid the location of the target T negating this statement, it is considered to be infinitely
distant from the robot. If the target T was close by, the angle to it would be dependent on how
far it was away. By making it infinitely far away, it acts like a compass heading and the angle
is then independent of where the robot is in absolute terms.

7.4 Action Representation

The set of possible actions available are similar to the efficient movement task; that is, target
velocity settings for each wheel. It is possible to reduce the set of actions by eliminating reversing
velocities, as it is not possible to keep the ball within the grippers while going backwards. Also,
high speeds are unlikely to be useful. The resulting range is [0, 1] metres per second for each
wheel. The smaller range allows a finer resolution of 0.1 metres per second without too great an
increase in the number of possible actions. In the previous case study, 5 actions were possible
for each wheel, giving 25 possible actions overall. For this task, 11 actions are possible for each
wheel, or 121 actions overall.

7.5 Reward Function

The reward function (7.2) for the turn-ball task builds on top of the reward function for efficient
movement, penalising terminal states that are illegal. For illegal states, the penalty is reduced in
proportion to how far around the ball has been turned. A state is considered legal if some part of
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the ball is between the fingers, or more precisely, if 0 ≤ xb ≤ 0.4 metres and −0.235 ≤ yb ≤ 0.235
metres. Otherwise the state is considered illegal, and thus terminal. A state is also considered
terminal if the absolute target angle is sufficiently small. Specifically, a state is terminal if
|α| < π

18
. The reward function can then be stated as

R(s, a, s′) = RT (s′) + RV (s′) + RP (s′) (7.1)

RT (s′) =

{

−1000 |α| if s′ is illegal
0 otherwise

, (7.2)

RV (s′) =

{

−vR if s′ is legal and non− terminal
0 otherwise

, (7.3)

RP (s′) =

{

− |α|
10π

if s′ is legal and nonterminal
0 otherwise

. (7.4)

The first term RT , or termination reward, penalises policies that allow the ball to roll out of
the fingers before reducing the absolute target angle |α| to π

18
or less. If the angle has been

reduced sufficiently, the reward is simply zero. The second term RV penalises movement, to
encourage policies that make a tight turn. Note that the sum of this reward component over an
episode corresponds to the distance travelled that episode. This term was added after finding
that without it, the robot would perform fast, but wide turns. The final term RP provides a
penalty based on how far the robot has turned so far. This term is intended to “shape” the
learning process by providing it a hint about which policies are better even when it does not
complete the turn. In addition, this term encourages policies that complete the turn quickly.

In forming the final reward function (7.1), a variety of approaches were tried, to encourage
learning a policy that turned the ball in minimal space. One approach, that produced reasonable
results was to include a penalty for the current speed of the robot in the reward function. By
discouraging high speeds, smaller turns were encouraged. Small turns are preferable because the
playing area is limited.

The penalty for an illegal state needs to be sufficiently large that it is not considered an
attractive shortcut. Illegal states are readily available; the robot merely needs to bounce the
ball out of the fingers. Legal terminal states, on the other hand, are more difficult to achieve.
Therefore, the penalty for an illegal state is multiplied by 1000.

If the robot partially achieves the goal, learning can be accelerated by rewarding it for doing
so. The measure of how well the goal has been achieved is the difference between the angle
to the ball and the angle to the target, α. If the absolute difference, |α|, is small, this can be
considered better than a policy that leads to it being large. Therefore, the absolute difference
is multiplied into the reward function for illegal states.

7.6 Learning a Policy

A policy for the turnball problem was learnt using Sarsa(λ) (algorithm 4 on page 30). The
resultant policy is referred to as sarsa-turnball. Due to the size of the state space, and the
greater number of dimensions, it was not possible to use a discrete coding of the state space
without greatly restricting the resolution allowed per dimension. Therefore, the Monte Carlo
variants were not tried.

Sarsa(λ) was applied with an eligibility decay λ of 0.7, a learning rate of 0.0005, and an
exploration factor ε of 0.1. Since the task is episodic, an appropriate choice for γ is 1. The tile
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Table 7.1: Tile coding parameters used to learn the sarsa-turnball policy.

Variable Minimum Maximum Intervals Range Resolution

xb 0.295 0.4 6 0.105 0.021
yb −0.235 0.235 6 0.470 0.094
vR −2.0 2.0 6 4.0 0.8
α −π π 10 2π π

5

ul 0.0 1.0 11 1.0 0.1
ur 0.0 1.0 11 1.0 0.1

coding used to represent the action-values included 15 tilings, 5 incorporating 〈xb, yb, α, ul, ur〉,
5 with 〈vR, ul, ur〉, and 5 with 〈α, ul, ur〉. The coding of each variable is defined in more detail
in table 7.1. Note that some variables that have been defined as part of the state of the robot
were left out in the final definition of the tile coding, since they seemed to have little effect on
the outcome but greatly increased the size of the tile coding data structure.

7.7 Simulated Environment

The simulated environment for this problem is more complex than for the previous task. The
simulation still uses just two dimensions using a plan view. Since the simulation is in two
dimensions only, the ball is simulated as a sliding puck, rather than a rolling ball. That is, the
ball is simulated as though it slides along the ground rather than rolling.

With this task, the simulator is more complicated since the simulated objects collide. It is
necessary for the simulation to accurately portray both where collisions occur (collision detec-
tion) and how the objects react to each collision (collision response). The objects are simulated
as rigid bodies, and collisions are assumed to occur instantaneously.

Collision response is determined from the momentum of the two objects, their angular mo-
mentum, their moment of inertia and the position relative to the object’s centres that the collision
occurred. The robot’s response is dealt with somewhat differently, as it is assumed that it is
not possible for an impact with the ball to cause it to skid sideways. Therefore, all momentum
transferred is adjusted to be in-line with the wheels.

Realism is desirable in the simulator, but it also needs to be fast. Some approximations
were allowed in the collision handling to reduce the time required to compute each cycle. For
example, the front area and fingers of the robot were approximated by a set of convex polygons,
rather than two concave arcs.

7.8 Physical Test Environment

The real robot tests involved the robot’s vision system to detect the position of the ball. The
vision system used specialised hardware, built by the RMIT RoboCup team, to segment a video
image 30 times per second, based on colour. For this problem, the main area of interest was
the orange coloured segment that corresponds to the ball. Image segment data is transmitted
to the laptop, which then performs a correction for the fish-eye distortion that occurs with the
90 degree field-of-view lenses used.

The ball’s distance and angle from the camera were estimated and this was then converted
to a position with respect to the centre of the robot. Relative ball velocity (ẋb, ẏb) was then
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estimated from previous values of xb and yb. The ball speed in the X direction was estimated
using the following equation:

ˆ̇xt ← ˆ̇xt−1 + k(xbt
− xbt−1

− ˆ̇xt−1) (7.5)

and similarly for ˆ̇yt. Note that the average velocity in the X direction over the last time period

∆t is given by the change in position over time, or
xbt

−xbt−∆t

∆t
. Here it is assumed that ∆t is 1,

thus allowing the simpler form shown in (7.5) to be used. The constant k was set at 0.2 for all
experiments. This value was found to be sufficiently small to smooth sensor noise, while being
sufficiently large that the robot could react to sudden changes in the ball’s velocity.

An important factor in the performance of the robot is the calibration of the vision system.
The behaviour performance is sensitive to visual accuracy because the position of the ball is
a key factor in deciding what action to take. In addition, deciding which states are illegal is
also based on vision data and this can have an effect on the behaviour’s performance. The ball
distance estimation is calculated based on the horizontal and vertical angle to the top or bottom
of the ball from the camera. Therefore, the orientation of the camera is critical and must be
adjusted carefully.

The vision system was slightly adjusted from that used during RoboCup 2000 due to two
factors. The first was that the centre of the camera was discovered to be slightly offset from the
centre of the robot — slightly to the right. Since the image was corrected for fish-eye distortion,
this had the effect that, if the camera was directed towards the middle of the front of the robot,
and thus was angled slightly left, across the centre line of the robot, the ball would be seen as
further away when to the left of the centre line in comparison to when it was to the right of the
centre line. This was corrected by straightening the camera so that its line was parallel to the
centre line of the robot, and then adjusting for this in the calculation of the ball position. The
second adjustment was to correct the estimate of the angle of the ball as this was out by a small
factor when the ball was close to the robot.

Calibration of the angle and position of the camera was based on making sure that when
the ball was between the fingers and close to the robot, that the position estimate corresponded
to the actual position, and also that the position estimate corresponded to the actual position
when the ball was positioned near the tips of the left and right fingers.

Each episode was performed by first setting the ball in front of the robot. When the robot
sensed that the ball was between the fingers, it started executing the behaviour until the ball
was out of its grasp or until the turn was completed. During the episode, the current time, state
vector, actions taken and reward were written to a log. After the completion of an episode,
a movement behaviour was used to return the robot to the centre of the room facing roughly
180 degrees away from the target. The ball was manually brought back in front of the robot
and this caused the next episode to start. Due to accumulated errors in the robot’s positioning
mechanism, it was occasionally necessary to pick up the robot to move it back to centre of the
room.

In order to avoid vision calibration or battery charge skewing results, the learnt behaviour was
tested for several episodes, then the hand-coded behaviour was tried for a number of episodes,
and then the learnt behaviour was tested again for some further episodes. It was necessary to
discard some episodes where battery charge was low.

During the physical evaluation, fewer episodes were executed for the hand-coded behaviour
(46) than for the learnt one (161) on the basis that less variability in performance was expected
from the hand-coded one. Fortunately, sufficient trials were executed to demonstrate significant
differences in performance between hand-coded and learnt behaviours.
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7.8.1 Using Prediction

For the task examined in chapter 6, the rmit-move-to behaviour made use of a forward estimation
of the state of the robot. Since this was quite successful, forward estimation was also used here
when the behaviours were transferred to the physical robot. Another approach would have been
to simulate the latency of the physical robot. By default, the latency was assumed to be 100
milliseconds. From the episode logs of actual runs on the the previous task, the latency appeared
to be at least this, and possibly up to 200 milliseconds.

To counter the latency, most experiments with both hand-coded and learnt behaviours made
use of a forward estimate of the state of the robot by 100 milliseconds. However, some additional
experiments were run using the learnt behaviour with no forward estimate and with a 200
millisecond forward estimate.

7.8.2 Using Continued Learning

As with the previous task, most experiments were run with a fixed policy. That is, the policy
is learnt under simulation, and then, when the policy is transferred to the robot, learning is
not continued. Some experiments were performed with a limited amount of continued learning.
Unfortunately, it was only possible to perform a small number of learning trials compared with
the number of learning trials performed on the simulator.

The approach of continuing to learn with Sarsa(λ) on the physical robot is particularly
relevant to this task, where fine control of the robot is required, and where the exact parameters
of the interaction between the ball and the fingertips of the robot can only be loosely modelled
by the simulator.

To ensure a fair comparison between learning and not learning on the robot, the policy must
still be frozen prior to the final test. For example, Sarsa(λ) involves an element of random
exploration, which may degrade the average performance. Therefore, starting with the policy
developed on the simulator, some number of learning trials (154) using Sarsa(λ) are run on the
physical robot, followed by a series of test trials (41) using the policy learnt as a result.

7.9 Simulator Results

Simulation performance during learning is shown in figure 7.5 on the next page. From the graph,
a gradual increase can be seen for the first 300 000 trials, while after that, the performance seems
to reach a plateau but also continues to vary somewhat from test to test. This tendency of
Sarsa(λ) to oscillate was discussed in section 2.4.7. The learning process took about 34 hours
on an Athlon 1GHz PC to perform 760 000 trials.

7.10 Physical System Results

The reward function provides us with a basic fitness measure. The mean reward totals are given
in table 7.2 on the following page. An arithmetically greater reward is more desirable, and so
on this basis sarsa-turnball should be considered the better behaviour. However, it is not clear
from looking at the average whether or not these results would be reproduced in practice. For
instance, there may not have been sufficient trials to allow the mean to be established sufficiently
accurately. Usually, a Student t Test would be used to test the hypothesis that the rewards had
different means, however in this case, the reward does not follow a normal distribution. This
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Figure 7.5: Policy performance during learning for the Sarsa(λ) algorithm.

Table 7.2: Mean reward obtained for turn-ball behaviours on the physical robot.

Behaviour Mean reward

sarsa-turnball -1032.9
rmit-turnball -1550.4

can be seen in a histogram of the rewards, shown in figure 7.6 on the next page. Therefore, to
compare the two populations, one approach is to apply a normalising transformation and then
use some form of t test. Alternatively, a non-parametric procedure, that does not rely on the
populations having a normal distribution, can be used. For this problem, the latter approach
was taken, and the non-parametric procedure used was a Wilcoxon Rank Sum Test [75].

Let H0 be the null hypothesis, that the median reward for rmit-turnball is equal to or greater
than the median reward for sarsa-turnball. The alternative hypothesis is that sarsa-turnball has
a median reward that is greater. The medians obtained for the sample data are shown in
table 7.3. The Wilcoxon Rank Sum Test gives a Z test statistic of −2.10, which is less than
the critical value −1.64 for a lower-tail test with a 95% confidence level, indicating that the
null hypothesis H0 can be rejected. The p-value, or probability of incorrectly rejecting the null
hypothesis from this data, is 0.018.

The success or failure rate for a behaviour is another important measure of performance.
Success occurs when the robot is able to completely turn the ball to the desired direction
without the ball slipping from between its fingers. Success is independent of the amount of
time taken and so is only a partial measure of the performance of the behaviour. Table 7.4

Table 7.3: Median rewards for sarsa-turnball and rmit-turnball.

Median reward Trials

sarsa-turnball −503.9 161
rmit-turnball −1934.2 46
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Figure 7.6: Histogram of rewards for turn-ball behaviours

Table 7.4: Success rate for turn-ball behaviours

sarsa-turnball rmit-turnball

successful episodes 76 8
success rate 47% 17%

failed episodes 85 39
failure rate 53% 83%

shows the numbers of successes and failures for the learnt and hand-coded behaviours. A χ2

test can be used to test whether these proportions are different. The χ2 test statistic is 13.2,
which is greater than the critical value of 3.84 for a 95% confidence level, indicating that the
success rates for the two behaviours are significantly different. The p-value, or probability of this
data being produced by two behaviours that had the same actual success rate, is 0.00028. Since
the observed success rate for sarsa-turnball is higher, it can be concluded that sarsa-turnball is
significantly more successful than rmit-turnball.

Apart from whether or not the manoeuvre was successful, another important factor in the
performance of the ball turning behaviour is the amount of time taken. In particular, it is
interesting to look specifically at the amount of time taken during successful episodes. The
mean episode times for successful episodes are shown in table 7.5. The hypothesis that sarsa-
turnball takes longer during successful episodes than rmit-turnball can be tested using a Student
t Test. The t statistic is −3.18 and this is less than the critical value of −1.66 for a 95%
confidence level for a lower-tail test. Therefore, the null hypothesis, that rmit-turnball takes

Table 7.5: Mean episode times for successful episodes

Mean time (seconds) Standard deviation

sarsa-turnball 7.5 1.97
rmit-turnball 5.2 1.18
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Figure 7.7: Histogram of episode times (in seconds) for successful episodes

Table 7.6: Final absolute angle to target (radians)

Trials Median angle (radians)

sarsa-turnball 161 0.47
rmit-turnball 46 1.91

the same time or longer, can be rejected. The p-value, or probability of incorrectly rejecting
a correct null hypothesis with this data, is 0.0010. Note that this assumes that the times are
normally distributed. The distribution of times can be seen in the histogram in figure 7.7. This
is the only performance factor for which rmit-turnball produced a better result.

The angle to the target at the end of an episode is the final performance measure examined
here. To simplify analysis, the absolute target angle, |α|, is used. If the target angle is close
to zero, this may indicate partial success that will not necessarily be reflected in the success
rates for the behaviour. The results for the target angle are not normally distributed, and this
can be seen in the histogram in figure 7.8 on the next page. As shown in table 7.6, the median
is smaller for sarsa-turnball than for rmit-turnball, indicating that sarsa-turnball had better
performance in this respect. As with the analysis of the reward results, a non-parametric test,
specifically, the Wilcoxon Rank Sum Test, is used to establish the significance of the results.
The null hypothesis, H0, is that the median absolute target angle for rmit-turnball is less than
or equal to that for sarsa-turnball. The alternative hypothesis is that the median absolute target
angle for sarsa-turnball is less than rmit-turnball. The Z test statistic is 2.53, which is greater
than the upper-tail test critical value of 1.64 for a 95% confidence level, indicating that the null
hypothesis can be rejected. The p-value, or probability of rejecting a null hypothesis that is
correct, is 0.0057. This can be summarised as indicating that sarsa-turnball produced a median
final target angle significantly closer to zero than rmit-turnball.
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Figure 7.8: Histogram of final target angle (in radians)

Table 7.7: Success rate for turn-ball behaviours with various forward estimate times.

sarsa-turnball 0 sarsa-turnball 0.1 sarsa-turnball 0.2

successful episodes 10 76 9
success rate 42% 47% 69%

failed episodes 14 85 4
failure rate 58% 53% 31%

7.10.1 Forward Estimation Time

In all previously mentioned physical test results for this task, forward estimation of the position
of the robot of 0.1 seconds was used in the world model. This was intended to counteract
the latency between receipt of sensor data and actions taking effect. Figure 7.9 on the next
page shows the effect on the final target angle of varying the time used to forward estimate
the position of the robot. A forward estimate time of 0 indicates that no forward estimation
was performed. The relative success rates for different forward estimation amounts are shown in
table 7.7. Note that the total number of episodes varies for the different types for several reasons.
Some episodes had to be discarded as the battery voltage was too low—in particular a large
group of sarsa-turnball 0.2 trials were discarded for this reason. Also, rather than specifically
count the number of episodes performed with a particular set up, the experiment was run until
either the battery needed recharging or until after the experiment had been running for about
20 minutes.

The χ2 statistic between forward estimate times of 0 and 0.1 is 0.26, which is less than the
critical value of 3.84 and so the null hypothesis, that the two populations have the same success
rate, cannot be rejected. Between 0 and 0.2, the χ2 statistic is 2.56, and between 0.1 and 0.2,
the χ2 statistic is 0.13. Therefore, there is insufficient evidence to suggest that the success rates
are affected by altering the forward estimation time.

A Wilcoxon Rank Sum Test can be used to analyse differences in the final angle to the target
for the different forward estimate times. Between times of 0 and 0.1, the Z test statistic for
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Figure 7.9: Histogram of final absolute target angle during physical trials of sarsa-turnball with
forward estimate times of 0, 0.1 and 0.2 seconds.

Table 7.8: Final absolute angle to target (radians) with various forward estimate times.

Forward Estimate Time (seconds) Trials Median angle (radians)

sarsa-turnball 0 24 0.51
sarsa-turnball 0.1 161 0.47
sarsa-turnball 0.2 13 0.14

the final target angle is 0.30, which indicates that the null hypothesis, that the two populations
have the same median final target angle, cannot be rejected. Between times of 0 and 0.2, the Z
test statistic is −2.13, which is less than the critical value of −1.96 for a 95% confidence level,
indicating that the null hypothesis can be rejected and that there are significant differences
in the median final target angle for these two forward estimate times. A similar result occurs
between times of 0.1 and 0.2, where the Z test statistic is −2.09. Therefore, although there is not
sufficient evidence to suggest that the success rate is improved by increasing the forward estimate
to 0.2, there does appear to be sufficient evidence to demonstrate a significant improvement in
the final target angle. The median final target angles are shown in table 7.8.

If successful trials only are extracted, the time taken for each episode for the different forward
estimate times can be analysed with a t-test. The mean successful episode times were 8.5, 7.5,
and 7.4 seconds for 0, 0.1, and 0.2 second forward estimate times, respectively. There was
insufficient evidence to conclude that the differences in successful episode times were significant.

7.10.2 Continued Learning

The possible advantages of continuing to learn on the physical robot were explored by running
190 trials where the robot continued to learn using the Sarsa(λ) algorithm, and then a further
41 trials where the resulting policy was used without learning. As table 7.9 on the facing page
shows, the success rate was clearly degraded during the learning process, but then recovered
slightly after learning was discontinued. The χ2 test statistic for the success and failure rates
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Table 7.9: Observed success rates for Sarsa(λ) turn-ball behaviours during and after continued
learning compared with a base case of no learning on the robot.

before during after
continued learning continued learning continued learning

successful episodes 76 51 16
success rate 47% 27% 39%

failed episodes 85 139 25
failure rate 53% 73% 61%
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Figure 7.10: Histogram of final absolute target angle |α| from trials of sarsa-turnball before,
during and after continued learning on the physical robot.

prior to and during learning is 15.6, which is well in excess of the critical value of 3.84 for a 95%
confidence level. This indicates that the success rate during learning is significantly worse than
prior to continued learning. Although the success rate after continued learning does not appear
to recover to the levels prior to continued learning, there is insufficient evidence to suggest that
the success rate is significantly different.

As mentioned previously, it is useful to examine the final absolute target angle as this may
show partially successful turns occurring. Figure 7.10 shows that trials during continued learning
and to some extent those after continued learning, terminated while the target angle was still
quite large. A Wilcoxon Rank Sum Test can be used to test the hypothesis that the median
absolute target angle is affected by continued learning. Let the null hypothesis be that the policy
before and the policy after continued learning have the same median absolute target angle. The
Z test statistic is 1.34, which is less than the critical value of 1.96 for a 95% confidence level.
Therefore the null hypothesis cannot be rejected. In other words, there is insufficient evidence
to suggest that continued learning of 190 trials has an effect on the final target angle.

Another possible approach is to continue learning indefinitely. Again, the Wilcoxon Rank
Sum Test can be used to determine the effect on the target angle during continued learning. Let
the null hypothesis be that the policy before and the policy produced during learning have the
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Table 7.10: Observed final absolute angle to target (radians) for Sarsa(λ) before, during and
after continued learning.

Trials Median angle (radians)

before continued learning 161 0.47
during continued learning 154 1.81
after continued learning 41 1.52

same median absolute target angle. The Z test statistic is −4.56, which is much less than the
lower critical value of−1.96 for a 95% confidence level. The p-value is 5×10−6. Therefore the null
hypothesis can be rejected, and the target angle is significantly worse during continued learning
than prior to it. This confirms the suspicion that some aspects of the learning algorithm might
reduce the performance. The median absolute target angles before, during and after continued
learning are shown in table 7.10.

It is interesting to note that although the behaviour was less successful during learning on the
physical robot, the average amount of time taken for successful episodes (7.5 seconds) decreased
(to 6.8 seconds). It then increased again (to 7.8 seconds) after learning was halted . A t-test
can be used to examine the differences in mean successful episode times. Let the null hypothesis
be that the policy before learning had the same mean time for successful episodes as the policy
produced during learning on the robot. In this case, an F -test indicates that the variances are
different, and so unequal variances are assumed. The t-test statistic is 2.36, which is larger than
the critical value of 1.66 for a one tail test with a 95% confidence level. The p-value is 0.010.
This indicates that the null hypothesis can be rejected and that the mean time for successful
episodes was smaller during learning (6.8 seconds) than before learning (7.5 seconds).

Times after continued learning were significantly higher than those during learning (p-value
of 0.05), but not significantly higher or lower than those prior to learning (p-value of 0.24). A
possible explanation is that the learning tended to disrupt the behaviour as the agent attempted
to explore different actions every so often. The task is a delicate one, and even a small amount
of disruption causes the ball to be lost from between the fingers. Since Sarsa(λ) distributes
exploration roughly evenly over time, it disrupted longer episodes with a greater probability that
it did short episodes. This is also consistent with the increased failure rate during continued
learning.

7.11 Discussion

Apart from the quantitative aspects of the behaviours, it is also instructive to look at qualitative
aspects. Specifically, it is useful to look at the shape of the path of the robot, and the behaviours
response to certain sorts of problems that occurred.

Figures 7.11 on the next page and 7.12 on the facing page show successful turns by rmit-
turnball and sarsa-turnball, respectively. The initial conditions are similar, but slightly different
and this is reflected in the southward turn by rmit-turnball compared with the northward turn
by sarsa-turnball. The arc is clearly much smaller for rmit-turnball. Note that, in these figures,
the position of the ball has been estimated by the vision system, and may not correspond to
exactly where the ball actually was. The positions are logged at 0.1 second intervals, so for the
successful turn for rmit-turnball, in figure 7.11, the speed of the robot is relatively fast towards
the end of the episode. It is able to keep control of the ball while turning because the ball has
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Figure 7.11: A successful turn executed by rmit-turnball on the physical robot.

Figure 7.12: A successful turn executed by sarsa-turnball on the physical robot.
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Figure 7.13: An unsuccessful turn executed by rmit-turnball on the physical robot. The be-
haviour does not respond to the ball drifting to its right but just moves in a straight line.

stopped rolling and is skidding along the floor. The difficulty with this is that it requires the
ball to be in a specific position for this to occur. This somewhat accounts for both the relatively
low success rate of this behaviour, and also its greater speed when successful. Figure 7.13 shows
an example of the rigid nature of rmit-turnball. In this case, the ball is too far out of its grasp
to be brought back by moving straight ahead, but it fails to adjust. Figure 7.14 on the next
page, on the other hand, shows how sarsa-turnball turns back towards the ball a little after it
starts to leave its grip. Unfortunately, in this case, it over-reacts and this knocks the ball with
the left finger. Note that the starting conditions for both successful and unsuccessful turns were
quite similar. That is, the ball was within the fingers, slightly less than a 180 degree turn was
required, and the ball was either stationary or moving slowly.

7.12 Summary

The results establish significant differences in the performances of rmit-turnball and sarsa-
turnball. In general, sarsa-turnball gave better performance than rmit-turnball in all factors
except for how quickly it turned the ball, when it did so successfully. The sarsa-turnball be-
haviour did better in terms of the reward function. However, since this includes shaped com-
ponents, that is components that are designed to assist learning, comparing the accumulated
reward may not be entirely fair. If the shaped components are removed, the overall measure is
the absolute target angle at the end of the trial. This has been shown to be significantly closer
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Figure 7.14: An unsuccessful turn by sarsa-turnball on the physical robot. The behaviour brings
the ball back into the robot’s grasp but ultimately loses control of it.
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to zero, and thus corresponding to better performance, for sarsa-turnball than for rmit-turnball.
In solving this problem, the learnt behaviour had some small handicaps in comparison to the

hand-coded one. Despite the handicaps, it was able to produce a better performance overall.
The first handicap was to do with the simulation model of the interaction between the ball

and the robot’s fingers. The hand-coded behaviour rmit-turnball was designed to make use of
the fact that the ball tends to stick to the fingers. When the ball sticks, it skids along the floor
rather than rolling. This increases the friction between the ball and the floor, and, if the robot
is moving forwards, the ball pushes back more strongly. Therefore, if the ball is in the right
position, a tighter turn is possible. The change in friction is not simulated and so the learnt
behaviour is unlikely to be optimal in this regard.

Another aspect that was different between the hand-coded behaviour and the learnt one was
that the hand-coded varied an acceleration factor as well as the target velocity. For most tasks,
robot acceleration is usually required to be as high as possible, because it is desirable for the
robot to be able to change speed and direction as quickly as possible. In control system terms,
the velocity control is under-damped, meaning that the velocity increases or decreases rapidly,
but then tends to oscillate around the target velocity. Reducing the acceleration factor increases
the damping on the velocity control. For this problem, lower acceleration and smoother, less
jerky velocity changes are desirable as they are less likely to cause the ball to bounce out from
between the fingers. The hand-coded behaviour used small acceleration factors, varied the
acceleration factor depending on the situation, and used differing acceleration factors for each
wheel. The learnt behaviour was trained using a proportional control system and restricted to
a single acceleration factor.

The learning problem was constrained by limiting the possible set of legal states and the
allowed actions. By restricting the ball to being between the fingers, the solution was restricted
to some form of dribbling to turn the ball. Had this restriction been removed, it might have
been found to be more efficient to use a series of sideways flicks to turn the ball. The action set
did not include kicking or reversing either wheel. Although it does not seem likely that kicking
will help this task, it is possible that reversing might be useful in some cases, such as reversing
slightly to help capture a ball moving towards the robot, or reversing one wheel slowly while the
other moves forward quickly, to execute a tight turn.

In comparison to the previous case study, two additional issues were examined. The first
issue examined was the effect of prediction or forward estimation on the success of the learnt
behaviour. Predicting the position of the robot is intended to give the behaviour a picture
of the world as it will exist when the action happens. The second issue examined was the
effect of continued learning, or, in other words, continuing to use reinforcement learning after
transferring the policy to the robot. It was expected that continuing learning on the robot would
cause the policy to improve, however this did not appear to happen. However this is probably
not surprising given that only a few hundred learning trials were run, whereas the simulator
trials indicate that a few hundred thousand would be needed to learn the task from scratch.

The key finding of this chapter is that it is possible to learn a sophisticated behaviour using
simulator based learning, and for that learnt behaviour to out-perform a hand-coded equivalent.
The next chapter will present a third and final case study involving a different robotic task,
again involving manipulation of the ball, but with the additional factor that a wall is nearby.



Chapter 8

Off Wall Task

This task involves getting the ball clear of the wall or running the ball down the wall towards
the goal. When the ball is close to the wall, it can only be accessed from one side. Also, it is
important not to get too close to the wall or risk stalling the robot.

A stall may occur for a number of reasons, but the general problem is that the motors cannot
turn one of the wheels in the desired direction. The low level controller flags a stall condition
when the motor current exceeds a certain threshold for a period of time. Stalls generally occur
when the robot bumps into an immovable obstacle. Sometimes it is possible to recover from
a stall by reversing slightly. However, if the robot becomes jammed near the wall, the robot,
due to its rectangular shape, may not be able to recover. It is a good idea to avoid stalling in
RoboCup as it gives the other team an advantage while the robot recovers.

For the purpose of this study, it is assumed that the wall lies along the Y axis (x = 0) with
the playing field on the negative X side. The target goal is in the positive Y direction.

8.1 Motivation

As with other case studies presented here, the task is realistic. From the point of view of
RoboCup, it is desirable to be able to keep playing the ball when it is near the wall, rather than
simply having to avoid it entirely. Also, it is desirable to treat it as a separate case so that
the robot does not ignore the wall and become jammed against it. Finally, it is an increase in
complexity from the previous tasks in that it involves both manipulation of the ball and close
interaction with a wall.

8.2 Hand-coded Algorithm

The hand-coded algorithm is based on the algorithm used for the RMIT United Team and is
called rmit-offwall. The output of the hand-coded algorithm consists of a speed and an angular
velocity. It is shown as algorithm 11 on the following page.

8.3 State Representation

In choosing the state representation for the off-wall task, the main consideration was to ensure
that sufficient information was available so that the state could be considered Markovian, and
also that just enough information was provided, and no more. An initial formulation of the
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1. (If ball in fingers.) if db < 0.37

where db is the distance from the centre of the robot to the centre of the ball in metres.
The ball has a radius of 0.1 metres, while the distance from the centre of the robot to its
front is 0.2 metres. The fingers extend an addition 0.07 metres in front of this.

(a) (Stop forward movement.) v ← 0

where v is the target velocity for the centre of the robot, or the average velocity for
both wheels.

(b) (Spin counter-clockwise.) ω ← π

where ω is the target angular velocity.

2. (If ball not in fingers.) else

(a) (Move closer to the ball.) (v, ω)← rmit-moveto

use the hand-coded behaviour for moving to a target point to move closer to the ball.

3. (Convert velocities.) Angular and average velocity is converted into left and right wheel
velocities.

Algorithm 11: The rmit-offwall behaviour

state included the absolute position of the robot and the ball. This includes the Y coordinate
for both the robot and the ball. However, the robot could be considered to be at y = 0 without
changing the problem, and therefore one of the Y coordinates could be discarded. That is, it is
not necessary for the robot to know where about it is on the field, but merely its distance from
the wall. It is not necessary to know the absolute position of the ball, but merely its relative
position to the robot.

The above considerations led to a state comprised of the following components,

〈drw, dbw, yrb, φr, vr, ωr, ẋb, ẏb〉.

The static and dynamic components of the state representation are shown in figures 8.1 on the
next page and 8.2 on page 116, respectively.

The distance from the robot to the wall is denoted by drw, the robot’s heading by φ, the
distance from the ball to the wall by dbw. Previously, the robot’s speed was described by the two
wheel velocities but for this problem it is represented by the average velocity, vr, and angular
velocity, ωr. The reason for using this form of representation is that in this task, it is expected
that the robot will tend to turn on the spot, meaning that the forward velocity will usually be
small or zero, while the angular velocity will vary greatly. However, when this is represented
using wheel velocities, both will vary considerably. Therefore, forward and angular velocity
appear to be a simpler representation for this task and may assist the function approximation
process. The ball speed (ẋb, ẏb)

T is based on filtered estimates of the absolute (x, y) position for
the ball, rather than relative coordinates. The filter is based on equation (7.5).
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Y

Figure 8.1: Static components of the state representation for the off-wall task. In the above
example, both the distance from the robot to the ball yrb and the heading of the robot φ are
negative. The two distances from the wall drw and dbw are measured perpendicular to the wall.

8.4 Action Representation

As with the previous tasks, the robot’s action is represented by left and right target wheel
velocities, ul and ur. These two target velocities, in metres per second, are selected from the
range [−1, 1] with a resolution of 0.2. This yields 11 different target velocities for each wheel, or
a total of 121 different possible actions. Some preliminary tests with the simulator showed that
this was a sufficiently limited number of actions for a policy to be learnt in a reasonable amount
of time. Increasing the number of actions per wheel to 21, thus increasing the total actions to
441 made the learning process much slower and it did not converge to a solution running for
about a week.

8.5 Reward Function

It took some trial and error to define a useful reward function for this task. The main difficulty
was that the full effect of a set of actions may be uncovered sometime after the ball is out of
reach of the robot. However it is also desirable to end the episode when the ball is out of reach,
so that the scope of the behaviour is reasonably limited. Therefore, it is hard to assess the
true reward due to the episode, even after the last step. The compromise used here was to
assume that the ball’s velocity would be a good indicator of where the ball would end up. This
assumption will not be valid in cases where the ball is bounced against the wall, and seemed, at
the terminal state, to have a velocity directed towards the wall. Further simulation runs would
probably show the ball bouncing off.
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ẋb

ẏb

X

Y

Figure 8.2: Dynamic components of the state representation for the off-wall task. The velocity
of the robot, vr is calculated from the average of the speeds of the two wheels, and is negative
when the robot is moving backwards. The angular velocity of the robot, ωr, is measured in
radians and is negative in the above diagram. The speed of the ball is represented by the vector
(ẋb, ẏb)

T and is based on the absolute motion, rather than relative to the motion of the robot.
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The reward function used had the following form,

R(s, a, s′) = RS(s′) + RY (s′) + RX(s′) + RT (s′), (8.1)

RS(s′) =

{

−1000 if the robot is stalled
0 otherwise,

(8.2)

RY (s′) =

{

20ẏb if s′ is terminal
0 otherwise,

(8.3)

RX(s′) =

{

−100ẋb if s′ is terminal and ẏb > 0 and ẋb < 0
0 otherwise,

(8.4)

RT (s′) =

{

0 if s′ is terminal
−0.1 otherwise.

(8.5)

The main reward function (8.1) is divided into four parts, all of which are dependent on the
state being transitioned to s′ and are independent of the originating state s or the action a.
The four parts are: a penalty for stalling RS (8.2), a reward for pushing the ball in a positive
Y direction RY (8.3), a reward for pushing the ball in a negative X direction RX (8.4), and a
small, time-based penalty for taking a step RT (8.5). The ball velocity components, ẋb and ẏb

are measured in metres per second.
The state s′ is terminal if and only if, for the state s′, |yrb| > 0.4 metres, or dbw > 0.6 metres,

or drw > 0.6 metres, or the robot is stalled. In other words, the episode terminates when the
distance along the wall between the ball and the robot is too large, or when either the ball or
the robot drifts too far away from the wall. A stall almost always occurs when the robot comes
into contact with the wall, but can also occur if the ball gets jammed between the robot and
wall.

There are several things to note about the design of this reward function. The RY component
rewards an episode that finishes with the ball moving in a positive Y direction and penalises
episodes that terminate with the ball moving in a negative Y direction. This means that the
behaviour is specific to the case where the goal is in the positive Y direction. However, as
discussed in section 4.3 on page 50, it is possible to reuse behaviours for symmetrical tasks. The
RX component rewards an episode that ends with the ball moving in a negative X direction, or
in other words, moving away from the wall. However it only provides this reward when the ball
is also moving in a positive Y direction. This avoids rewarding episodes that get the ball to move
away from the wall but in the wrong Y direction. Note that if the ball is moving in a positive X
direction this is not penalised. Movement away from the wall is more highly rewarded per unit
velocity than movement in a positive Y direction. In practise, getting the ball to move away
from the wall is harder for the robot to achieve than kicking it along the wall. The final part
of the reward, RT , attempts to ensure that the robot acts in a timely manner by penalising the
robot based on the time spent in an episode.

8.6 Learning a Policy

The Sarsa(λ) algorithm was used to learn a policy for this task. As with the ball turning task,
the dimensionality of this task is high and it is therefore difficult to discretise the state since the
high dimensionality means that a large number of array cells are required to fully map action-
value function for each part of the state space. For this reason, the approach of using Monte
Carlo algorithms with discretised state was not tried.
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Table 8.1: Tile coding parameters used to learn the sarsa-offwall policy. Distances for drw, dbw,
and yrb are shown in metres, speeds ẋb, ẏb, vr, ul, and ur in metres per second, angles φ in
radians, and angular velocities ωr in radians per second.

Variable Minimum Maximum Intervals Range Resolution

drw 0.1 0.6 4 0.5 0.166
dbw 0.1 0.6 2 0.5 0.5
ẋb −1 1 2 2.0 2.0
ẏb −1 1 2 2.0 2.0
vr −1 1 2 2.0 2.0
ωr −π π 2 2π 2π
yrb −0.4 0.4 4 0.8 0.266
φ −π π 8 2π π

4

ul −1 1 2 2.0 2.0
ur −1 1 2 2.0 2.0

Several different approaches were tried to find a configuration of the tile coding that produced
a good result quickly. The main difficulty is that the state space has a high dimensionality and
that if a straightforward coding of the data is used, the function approximator requires more
memory than is available. Even if sufficient memory is available for the function approximator,
training time may be excessive if there are many weights to train. Initially, the approach of
tiling across only a few dimensions at a time was tried. For example, one tiling could involve
just (yrb, vr, ul, ur). This type of approach is useful when the function being approximated
contains some variables that are more relevant than others, and therefore need more detailed
representation. This approach is mentioned by Stone and Sutton [111] along with the trick of
hashing the tile coding. The hashing approach was not tried.

The final approach used here was to reduce the number of intervals for most variables to 2.
This reduction allowed all variables to be included in all tilings. This approach has the advantage
that it does not make assumptions about the relationships between the variables involved.

The experiments shown here made use of 20 randomly positioned tilings over the full set
of variables, with the ranges and intervals described in table 8.1. The learning rate was set
to 0.0005 or 0.01

N
where N is the number of tilings. The final sparse tile coding was about 2.6

megabytes in size. The decay rate for eligibility λ was set to 0.7, and the exploration factor ε
was set to 0.1.

8.7 Simulated Environment

The simulated environment makes use of the same collision detection and response mechanism
as the previous case study. During simulated training episodes, a wall is positioned along the
line x = 0 and the robot is initially positioned at a random distance from the wall, between
0.1 and 0.6 metres away. It has a random heading and random wheel velocities, each in the
range [−1, 1] metres per second. The ball’s position is selected at random so that its centre is
between the robot’s centre and the wall and that its Y position relative to the robot is in the
range [−0.4, 0.4] metres. The ball’s velocity (ẋb, ẏb) is also selected at random by selecting ẋb

from the range [−1, 1] and doing similarly for ẏb.

A difficulty with a completely random selection of starting conditions, is that the robot, ball
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or wall may already be colliding, or overlapping with one of the other objects. Therefore, it
is necessary to throw away any randomly selected situations that involve overlapping objects.
Also discarded are any situations where the ball is more than 0.3 metres away, since if the ball
is too far away, the robot may not have an opportunity to influence the ball’s direction prior to
the episode ending.

8.8 Physical Test Environment

An important problem when transferring behaviours from the simulator to the physical robot, is
how to accurately estimate the state. This task introduces two problems in estimating the state,
that did not come up in the tasks previously examined in this thesis. The first problem is that
the state must identify the relative position and angle of the wall, even when the robot cannot
see the wall directly. The second problem is that the state must identify the relative position of
the ball, even when it cannot be seen. These two problems are both instances of problems with
the assumption of full observability. They are resolved here by maintaining a set of beliefs in
the world model that track the relative position of these objects even when they cannot be seen.

To resolve the problem of maintaining a belief of where the robot is relative to the wall,
wheel encoder data are integrated into the robot’s position. However such data are prone to
errors that accumulate over time. Therefore, it is useful to take landmark sighting data from the
vision system and to fuse this with the wheel encoder data to form a combined estimate of the
position. The landmark in this case is the wall, and the vision system, when it sees it, provides
an estimate of the angle to the wall φ̂, and the distance to the wall d̂rw. The vision estimates
are most accurate when the robot is facing perpendicular to the wall. The position information
provided by the wheel encoders are combined with the visual estimates using a filter.

To resolve the problem of maintaining a belief about where the ball is when it cannot be seen,
the world model contains a current estimate of the ball’s position and speed. This is updated
by new sightings using a filter.

When using a simulated environment, it was possible to randomly select the starting condi-
tions from a uniform distribution. However, in the physical environment, it was more natural
to use those starting conditions obtained by using a behaviour to move the robot within range
of the ball. The behaviour used to move the robot into range actually attempted to move to a
target point with the same Y coordinate as the ball, but with an X coordinate of −0.5, or in
other words, 0.5 metres away from the wall. Another advantage to this approach was that it
was similar to the behaviour used during the RoboCup competition to bring the robot alongside
the ball.

8.9 Simulator Results

The Sarsa(λ) algorithm was run for about 20 hours on an Athlon 1GHz PC, and in that time
performed 830 000 training episodes. The performance of the policy learnt using Sarsa(λ) is
shown in figure 8.3 on the next page. As with the previous chapters, the performance is based
on testing the policy using a fixed test set of 200 randomly generated scenarios after every 1000
learning trials. Overall, this graph shows that the performance of sarsa-offwall quickly achieves
a level well above that produced by the hand-coded behaviour rmit-offwall. For the test set,
the hand-coded behaviour obtains an average reward of −179 per trial whereas sarsa-offwall
receives an average reward of −17 after 20 000 trials and by 830 000 trials produces an average
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Figure 8.3: Policy performance during simulator learning for Sarsa(λ) (sarsa-offwall) compared
with the performance of the hand-coded behaviour (rmit-offwall).

Table 8.2: Comparison of the average reward obtained using the learnt behaviour (sarsa-offwall)
and the hand-coded one (rmit-offwall). Twenty of the rmit-offwall trials ended in a stall condi-
tion. The last row shows the effect of removing these trials from consideration.

Behaviour Average reward Std. Dev. Trials

sarsa-offwall 25.7 32.3 248
rmit-offwall -104.9 325.6 175

rmit-offwall (excluding stalls) 11.8 27.2 155

reward of −7.6.

Figure 8.4 on the facing page is a magnification of the previous figure that shows how the
performance varies considerably but the overall trend is a slight increase in performance.

8.10 Physical System Results

Table 8.2 shows the average reward obtained for the hand-coded versus the learnt behaviour.
Some of the trials ended in a stall condition, skewing the distribution of rewards, as a stall
condition was punished severely by the reward function. Only rmit-offwall produced collisions
with the wall that caused the robot to stall its motors. If the trials involving a stall condition
are removed from the sample, the average reward improves but is still not as good as that for
sarsa-offwall.

To understand these results more clearly, consider the histograms in figures 8.5 and 8.6 on
page 122. These show the distribution of reward results for the two behaviours. From these
graphs, we can see that sarsa-offwall produces negative results less often, and when producing
positive results, is more likely to produce a reward above 40.

The total reward obtained during an episode is useful as a combined measure of overall
fitness, however it is not very meaningful on its own. Other factors to look at are: how long
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Figure 8.4: Policy performance during simulator learning for Sarsa(λ) (sarsa-offwall) showing
in more detail the performance towards the end of the learning process.
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Figure 8.5: Histogram of rewards obtained including stall conditions. The learnt behaviour
(sarsa) did not cause a stall and always produced results near or above zero.
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Figure 8.6: Histogram of rewards obtained showing the detail from the previous graph for re-
wards above −40. This graph clearly shows that sarsa-offwall produces better results more
frequently than rmit-offwall even if the problem of stalling were ignored.

Table 8.3: Average trial time

Time (seconds)
Average Std. Dev.

sarsa-offwall 2.81 2.42
rmit-offwall 3.59 3.05

each trial took, how frequently stalls occurred, the average speed of the ball in the positive Y
direction, and the average speed of the ball in the negative X direction (away from the wall).
With the last factor, if the ball speed is positive in the X direction, this can also be beneficial
as the ball will tend to bounce off the wall.

The average trial time is smaller for sarsa-offwall as shown in table 8.3. According to a
standard t-test for the difference in two means, and assuming that the trial times are normally
distributed, the mean trial time for sarsa-offwall is significantly smaller with a p-value of 0.0037.
A short trial time may be due to the behaviour reaching a terminal state early, by moving out
of range, for example. Therefore, a short trial time on its own does not necessarily indicate
good behaviour. On the other hand, since behaviours do not act in isolation, but are part of
a collection of behaviours that form the whole system, a short trial time can be positive as it
allows other behaviours an opportunity to act. In this case, the longer trial time for rmit-offwall
is due, at least in part, to the tendency of this behaviour to stall the robot.

Frequency of stalls is clearly differentiated between the two behaviours, as summarised in
table 8.4 on the facing page. The sarsa-offwall behaviour did not cause any stalls, while they
were frequent for rmit-offwall. When observing the action of the rmit-offwall behaviour, it was
quite noticeable that in a number of trials where a stall was not detected by the robot, the
robot was briefly jammed, holding the ball against the wall. Also, the wall became scratched
and marked from where the robot tried to rotate when too close to the wall. On examination
of the episode logs, it appears that the main problem is that the distance estimate to the ball
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Table 8.4: Frequency of stalls

Number of Number of Percentage of
stalls trials trials with stalls

sarsa-offwall 0 248 0%
rmit-offwall 20 175 11.4%

Table 8.5: Average Y component of ball velocity at end of trial

Average Std. Dev.

sarsa-offwall 0.22 0.42
rmit-offwall 0.07 0.37

makes it seem that the ball is more than 0.37 metres away, when in fact the ball is actually 0.3
metres away and as close to the robot as it is going to get. This was not merely a calibration
error, as it did not occur when the ball was not near the wall. It seems that it is either due
to an orange reflection from the white wall being misinterpreted by the vision system, or that
when the ball is squeezed between the robot and the wall, the top of the ball is higher and thus
appears to be further away. On the other hand, sarsa-offwall had better stall behaviour because
it always allowed for how far the wall was away, regardless of the distance to the ball. Therefore,
when the ball appeared to be behind the wall, it did not cause the robot to charge into the wall
regardless.

The average speed of the ball in the Y direction is significantly larger for sarsa-offwall than
for the hand coded behaviour, as shown in table 8.5. The t-test p-value is 0.00017. A positive
speed in the Y direction is desirable because this is the direction of the target goal. If the ball
is moved off the wall but is pushed in the direction of the home goal, this could be worse than
not getting the ball off the wall.

The average speed of the ball in the X direction was more negative for the sarsa-offwall
behaviour, as shown in table 8.6. The t-test p-value is 0.0375. It is desirable for the ball
speed to be negative in the X direction so that the ball moves away from the wall. The overall
distribution of results for the sarsa-offwall behaviour shows two peaks, as shown in figure 8.7
on the next page. One of these peaks is where the X component of the ball’s velocity is zero,
indicating the ball being run along the wall. The other is around −0.5, indicating the ball being
pushed away from the ball successfully.

8.11 Discussion

An advantage of always moving to a point 0.5 metres away from the wall before starting the
behaviour is that it allowed an observer to monitor the accuracy of the estimate of the robot’s
position. In all tests, the estimate was accurate to within a few centimetres.

The action representation used here constrains the solution found by SARSA(λ). In compe-

Table 8.6: Average X component of ball velocity at end of trial

Average Std. Dev.

sarsa-offwall -0.22 0.51
rmit-offwall -0.13 0.30
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Figure 8.7: Histogram of X component of terminal ball velocity

tition at RoboCup, the CS-Freiburg team [128] also used another approach to deal with the ball
when it was near the wall, and that was to kick the ball against the wall at a slight angle. It
would be possible to extend the action representation to include the option to kick and extend
the simulation to simulate an appropriate response from the ball.

The most obvious difference between the learnt and hand-coded behaviours for this task were
to do with proximity to the wall, and avoiding, or not avoiding, stall conditions. The hand-coded
behaviour has no explicit mechanism for avoiding collision with the wall, but there were some
implicit mechanisms. Firstly, if the ball was between the robot and the wall, and the robot was
not close enough to hit the ball, then it also would not be close enough to collide with the wall.
Secondly, if the ball was close enough, the only action would be to spin around, an action that
should not bring the robot closer to the wall.

The results show that stalls were commonplace for the hand-coded behaviour. One reason
is that the estimate for the distance to the ball is occasionally wrong when near the wall. This
is due to the fact that the colour of the ball, a bright orange, is sometimes reflected in the white
gloss of the wall, making the top of the ball appear to be higher. The ball may be squeezed
when pressed against the wall, making the top of the ball appear even higher. The distance to
the ball is estimated based on the vertical visual angle from the camera to the top of the ball.
Thus, if the top of the ball appears to be higher than it normally would be at that distance, the
estimate of the distance to the ball will be larger than it should be. Another reason for so many
stall conditions is that even when the distance estimates are accurate, it is simply not possible
to spin with the ball between the fingers if the wall is too close. Even though the spin does not
bring the robot closer to the wall, the combined ball and robot easily become wedged.

The experiments show that the hand coded behaviour was poor at avoiding stall conditions.
On the other hand, the learnt behaviours did not encounter them.

From the point of view of an observer watching the movement of the robot during the trials,
the hand-coded behaviour clearly caused the robot to move too close to the ball when trying to
kick it away from the wall and the walls became visibly scuffed by the robot. The hand-coded
behaviour also sent the ball in the wrong direction on occasion.
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The learnt behaviour sometimes caused the robot to spin around when it was too far away
from the ball. On the other hand, it occasionally moved slightly into the ball as it spun causing
a surprisingly effective kick. In one particular incident it performed this type of kick successfully
when the ball was behind it—relying on the ball position information in the world model. It
was generally more reliable than the hand-coded behaviour at sending the ball in the correct
direction.

8.12 Summary

In this chapter, a new behaviour to kick the ball away from the wall was developed using Sarsa(λ)
under simulation. This is a challenging task as the robot needs to weigh up the benefits of moving
towards the ball while avoiding getting stuck and thus stalling while near the wall. The reward
function was strongly weighted towards behaviours that avoided stall conditions and this is
reflected in the results for the learnt behaviour. In comparison, the hand-coded behaviour was
significantly more likely to stall. In addition, the learnt behaviour also had significantly better
performance in other factors such as how fast the ball was moving in the target direction at the
end of the trial.



8.12. SUMMARY 126



Chapter 9

Conclusions and Future Work

In this dissertation, an approach to learning real robot behaviours through reinforcement learn-
ing under simulation has been presented. This approach has been evaluated using three realistic
robot behaviour tasks, and shown to produce behaviours that significantly outperformed be-
haviours that had been developed by hand. The three robotic tasks were not randomly chosen
but were problems that were difficult to code by hand, and represent a variety of levels of diffi-
culty. They are all from the domain of robot soccer, however the approach is not restricted to
this domain and might be applied to other robot tasks.

A novel approach, called Policy Initialisation, that bootstraps the learning process was pre-
sented. This approach makes use of prior knowledge, in the form of an existing hand-coded
behaviour, as a starting point for the learning process.

9.1 Research Questions

The research questions posed by this thesis are as follows:

1. Can reinforcement learning algorithms be used to develop better performing physical robot
behaviours than those developed by hand?

2. If improved behaviours are learnt on a simulator, will that improvement transfer to the
physical robots?

3. Can training be refined on physical robots after training on simulator?

4. Is it possible to represent the world internally to suit the requirements of a Markov Decision
Process?

5. Is it possible to bootstrap the learning process by using an existing, hand-coded behaviour
as a starting point? In addition, does this bias the solution found?

9.1.1 Can reinforcement learning algorithms be used to develop better per-

forming physical robot behaviours than those developed by hand?

To answer this question, three example robotic tasks were examined: the efficient movement
task, the ball turning task, and the kick the ball away from the wall task. In all three cases, sig-
nificantly better performances were obtained from behaviours learnt using reinforcement learning
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algorithms and a simulator, than those produced using a hand-coded behaviour. The hand-coded
behaviours were either ones that had been published in a refereed conference proceedings, or
had been used in the RMIT-United RoboCup team, and been designed by an expert behaviour
designer with several years of experience in this field. Although it is not possible to say from
this that better behaviours could not be produced by hand, it does seem reasonable to suggest
that these behaviours are representative of those typically produced.

In the context of the efficient movement task, it was possible to compare the learnt behaviour
performance with A∗ search, which is guaranteed to find the optimal behaviour. In this way, it
was shown that in the simulation the learnt behaviours were close to optimal for the set of test
cases.

An analysis of the differences between the learnt and hand-coded behaviours showed up
several flaws in the hand-coded approaches. In the context of the efficient movement task, the
hand-coded behaviours did not adjust depending on the velocity of the robot or its angular
velocity. This appears to be quite critical, especially when the robot is already moving at
high speed. Hand-coded behaviours tend to ignore such factors because the problem is already
complicated enough. Another flaw in one of the hand-coded behaviours was not allowing for the
control latency. The learnt behaviours did well in an environment with a large amount of latency
even though this was not simulated. Further improvement of the learnt behaviours might be
possible through simulating the latency. An approach used to combat latency was to forward
predict the movement of the robot and to base the behaviour’s decision on this.

In the context of the turn ball task, a noticeable feature of the hand-coded behaviour was
that it was inflexible in the way that it attempted to recover the ball. That is, when the ball
drifted towards the tips of the fingers, the hand-coded behaviour drove the robot straight ahead.
In comparison, the learnt behaviour turned towards the ball slightly and seemed to do better at
recapturing the ball when it had drifted from its grasp.

The most noticeable feature of the hand-coded behaviour for the off-wall task was a surprising
tendency to hit the wall and stall. This is surprising because the behaviour seems as though it
has been designed not to do this. However, the learnt behaviour was much more successful at
avoiding both the wall, and a stall condition.

Several different learning algorithms were tried. The first task was small enough to allow a
tabular coding of the state space. This, combined with the two different types of Monte Carlo
algorithm produced significantly better results than using Sarsa(λ) with the state-action value
function represented by tile coding. In addition, it did so in much less time. The two types
were the Monte Carlo Exploring Starts and Monte Carlo ε-soft On Policy algorithms. Although
this result suggested that the Monte Carlo algorithms should also be tried with other tasks,
insufficient memory was available to code the larger number of dimensions required by these
other tasks.

9.1.2 If improved behaviours are learnt on a simulator, will that improvement

transfer to the physical robots?

In all three tasks, the learnt behaviours successfully outperformed their hand-coded equivalents
under simulation and subsequently also outperformed them on the physical robot.

On the other hand, there is evidence that even if a hand-coded behaviour outperforms another
hand-coded behaviour on the simulator, the latter may outperform the former on the real robot.
This was the case with the rmit-move-to and cmu-move-to behaviours. This appears to be due
to an aspect of the physical environment, specifically, control latency, that was not simulated.
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9.1.3 Can training be refined on physical robots after training on simulator?

This question was examined in the context of the “turn ball” task. This task was seen as
particularly applicable to further learning for several reasons. Firstly, the success rates, although
higher for the learnt behaviour, seemed to leave room for improvement. Secondly, there were
several aspects of the environment that were relevant but were not included in the simulation.
One specific aspect was the way that the ball could be turned much more sharply and at greater
speed if enough of its surface area was touching the fingers of the robot. This occurred because
the ball would then skid on the carpet, rather than rolling.

The overall result was that using the physical robot to refine behaviours learnt on the sim-
ulator did not significantly improve performance. In fact, there was a significant degradation
in performance during the learning process, probably due to the exploration of different actions
that occurs during learning.

The lack of improvement is slightly surprising, as intuition would suggest that any learning
on the real robot would improve the behaviour’s ability to handle the actual situation. There
are two difficulties with this, however. The first is that the number of trials required to converge
on a solution under simulation—of the order of hundreds of thousands of trials for the turn ball
task—suggests that many more real robot trials would be needed than were attempted here.
The second problem is that the episode lengths tended to be longer on the real robot than on
the simulator. This has a corresponding effect on the reward and means that all estimates of
the action-value will need to be adjusted.

9.1.4 Is it possible to represent the world internally to suit the requirements

of a Markov Decision Process?

In all three cases studied, it was possible to gather enough information from the sensors to form
a state signal with the Markov property that fully observed the environment.

When defining a problem as a Markov Decision Process, a necessary step is to ensure that the
state signal is Markovian, or in other words, that knowledge of past states makes no difference
in the agent’s ability to predict what will happen next. In addition, the state should be fully
observable, or in other words, the agent should be able to unambiguously identify the state
of the world from the state signal. These two issues are implicit in much of the current work
in the field of reinforcement learning, although they are not always considered to be required
factors. However, they have not been considered at all when looking at behaviour-based robots.
Instead, hand-coded behaviours tend to overlook aspects of the state that would be considered
relevant when the problem is phrased as an MDP. The experience here has been that these
are precisely the aspects that were needed to produce better behaviours. This suggests that
a significant part of the improvements over hand-coded behaviours seen in this thesis are to
do with including all the relevant aspects of the state to ensure that the state has the Markov
property and corresponds to a fully observable environment.

9.1.5 Is it possible to bootstrap the learning process by using an existing,

hand-coded behaviour as a starting point? In addition, does this bias

the solution found?

The possibility of bootstrapping the learning algorithm with an existing, hand-coded behaviour
was examined in the context of the efficient movement task. It was demonstrated that the Policy
Initialisation modification to the standard Monte Carlo learning algorithm produces a better test
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reward more quickly than if Policy Initialisation is not used. The result obtained for the efficient
movement task was that using Policy Initialisation was roughly equivalent to skipping the first
2 to 4 million learning trials.

A similar approach was tried with Sarsa(λ) and the tile coding function approximation. Four
different algorithms were tried. The most successful approach was to use Monte Carlo ES to
initialise the values based on the initial policy. However, even this did not compare well with
just using Sarsa(λ) by itself.

When initialising in this way, the question arises whether the solution will be limited or
biased by the form of the initial policy. In the example examined, the answer appears to be
that it will not. The main evidence for this is that the long term test performance is the same
regardless of whether policy initialisation is used. In addition, when looking at some parts of the
policy, it was noticeable that radical improvements could be made. Specifically, in many cases
where the hand-coded algorithm for efficient movement preferred to go forward, reverse motion
was more optimal, and these cases were changed to reverse motion in the learnt behaviour.

9.2 Future Work

This thesis has developed several high performance behaviours for a RoboCup robot and this
work could be further verified by applying it to the other robot soccer behaviours. For example,
the movement of the goalie robot is critical and also quite subtle. At the most basic level,
the goalie simply places itself between the goal and the ball. However, more sophisticated
behaviour is possible when the position of other robots is taken into account. In particular,
there is a difficult trade-off to make between staying close to the goal and rushing out to meet
the attacker. Sophisticated tasks such as that of the goalie can be difficult to express as Markov
Decision Processes because of the large number of variables that need to be considered.

The efficient movement task addressed movement without obstacles. Future work will need
to verify that the approach used in this thesis can be extended toward situations where the robot
must avoid obstacles when moving to a target location. A possible approach to restricting the
size of the state space is to use an approach developed by Bowling [23] that only considers the
nearest obstacle. A more sophisticated approach would be to use a high-level path planner, such
as that used by CS-Freiburg [51], to plan paths around obstacles and to provide the low-level
movement behaviour with the next intermediate target point.

Some tasks in robot soccer are usually specified in a way that implies that the state must be
partially observable. For example, the RMIT-United team used a find-ball behaviour that was
employed when the position of the ball was unknown. In future work, this work will be extended
to such problems. One possible approach that could be used is to convert the partially observable
problem into a fully observable one. For example, rather than consider the ball position to be
unknown, CS-Freiburg [51] used a probability grid for the position of the ball over the whole
field. The find-ball behaviour can then be converted to a behaviour that moves to the ball’s
most probable position based on previous sightings.

In this work, the tabular Monte Carlo method algorithms were only attempted on the smallest
problem, since memory was limited and this limits the maximum number of states. However,
the tabular Monte Carlo algorithms produced the best performing behaviour most quickly when
they were used. Tabular algorithms can still be applied to large state spaces but a more coarse
discretisation may be required. Future work will examine whether tabular Monte Carlo methods
can be applied to problems with larger state spaces without sacrificing performance.



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 131

All of the work here was performed using one robot. In future work, robots of the same type
and other types of robots will be used to verify that this work is not specific to any particular
robot or type of robot. It seems likely that it may be necessary to learn the behaviours again
on a different simulator if the class of robot changes significantly.

An additional avenue of future research is to examine the effect of further refinement of
the simulation. The simulator used in this work is only an approximate one. For example,
the simulation did not accurately predict the number of steps that would be taken by the real
robot when moving to a target location. It seems likely that improvements in the realism of
the simulator will make corresponding improvements in the behaviours developed. Therefore,
an interesting question to be explored in future work is whether this correspondence holds and
whether there are large improvements in the performance of the behaviour to be made.

Another issue is the decomposition of large tasks into ones that are small enough to learn as
individual behaviours. Although several automatic hierarchical task decomposition approaches
exist (see section 2.4.10 on page 32), none currently make use of the symmetries that can occur
in real, two wheel robot tasks. This thesis has presented an approach for manually decomposing
tasks based on symmetrical aspects of the task. Future work will look at exploring ways of
automating this process.

Furthermore, automatic task decomposition typically requires transition states, or groups
of states, where the robot transitions from using one behaviour to using another. Wiering
and Schmidhuber [129] refer to these as sub-goal states. In this work, hysteresis was used to
avoid small changes in sensory information causing oscillation in the selection of the current
behaviour. Hysteresis thresholds are currently selected manually. As part of an automatic task
decomposition, future work will investigate automatic selection of the hysteresis thresholds.

In this work, a method was developed that produced better performing behaviours than
produced by hand. However, in comparison to the hand-coded behaviours, the learnt ones tend
to be memory intensive. This is because they make use of a large, unsummarised map of states
to actions, or state-action pairs to values. In future work, one aim will be to substantially
reduce the memory requirement of these maps, preferably without reducing performance. A
possible approach is to use some further machine learning technique such as genetic programming
to summarise the policy once it has been found. An advantage of genetic programming is
that the result of learning is a program and may thus be more directly compared with hand-
coded behaviours. This would also need to be compared with using different types of function
approximation techniques during the reinforcement learning process.

Another aim in future work will be to examine the problem of continued learning on the robot.
Continued learning offers the potential benefit of overcoming limitations in the simulator, and
allowing the behaviour to tailor itself to its environment. Although some attempt was made to
do this in this thesis, no substantial improvement was seen. This seems to reflect the idea that
the policy transfers more readily than the action-value function. If this is the case, some variant
of the approaches used to initialise learning from a policy may provide a method to combine the
benefits of both simulated learning and continuing that learning on the robot.

If the above approach is successful, it may provide some solution to the problem of learning in
cases where the robot has dynamic instability. For example, many current legged robots attempt
to solve the problem of walking by avoiding any instability. The difficulty with attempting to
learn how to walk using a real robot is that it is a complex task and it can be expected to
require a large number of trials to train. In addition, as with the ball turning tasks, many
trials will tend to be short, and provide little useful feedback. A possible solution is to make
use of a simulator. However it also seems likely that simulator-based learning will not produce
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a policy sufficiently tailored to the robots characteristics. If an approach can be developed to
allow continued learning on the physical robot, using the simulator-based policy as a starting
point, it may be possible to develop good policies for difficult problems such as walking with
dynamic instability.

New application areas for autonomous robotics, such as home entertainment and intelligent
manufacturing, are emerging. These areas demand robustness and reliability, but performance
is also a key issue. The techniques developed in this thesis are quite general and should allow
behaviour-based performance to be improved in a range of autonomous robotic application areas.

9.3 Summary

In conclusion, this work has demonstrated the design of an internal world model to meet the
requirements of a Markov Decision Process. It has evaluated a new technique to seed reinforce-
ment learning algorithms from an existing behaviour. Furthermore, this work has demonstrated
that significant performance improvements over hand-coded behaviours are possible through
the application of reinforcement learning in a simulated environment. Most significantly, it has
shown that the improved performance on the simulator carries through to improved performance
on the real robot. Finally, the strength of the results indicate that this approach will make real
improvements in the way autonomous robots are developed.



Appendix A

Robot Motion Simulation

A simplistic model of the motion of the robot is used in this thesis. The main simplification is to
assume that no skidding occurs during motion, other than that to perform normal turns. This
allows the position of the robot to be integrated from changes in the wheel positions. Based on
work by The equations giving the rate of change of position over time are,

ẋ = v cos θ,

ẏ = v sin θ,

where v is the velocity of the centre of the robot in the forward direction, θ is the heading, (x, y)
is the position of the robot, ẋ is the rate of change of position in the x direction, and ẏ is the
rate of change of position in the y direction. The velocity can be calculated from the wheel
speeds, and the heading can be integrated from the rate of change of heading, which can also
be derived from the wheel speeds, as follows:

θ̇ =
r

2S
(ωR − ωL) ,

v =
r

2
(ωR + ωL) ,

where ωL and ωR are the angular velocities of the left and right wheels, respectively, r is the
radius of the wheel, and S is the distance between the two wheels. Position integration is
approximated numerically by

xt+1 = xt + ẋt+1,

yt+1 = yt + ẏt+1,

θt+1 = θt + θ̇t+1.

At this stage, it is possible to calculate the updated position of the robot given an initial position
vector (x, y, θ)T and angular velocity of the wheels ωL, ωR over time.

This leaves the question of simulating the movement of the wheels. To keep things simple,
and for the purpose of estimating their velocity, the wheels are simulated as though they were
independent, and moving along a linear track. In the physical robot, the power sent to each
wheel is controlled by a PID (proportional-integral-derivative) controller, based on a target
velocity. This is simulated here as a simple proportional controller, and the power considered to
correspond to the resulting acceleration. That is,

ω̇L = bound

[

uL

r
− ωL, ω̇min, ω̇max

]

,
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where uL is the desired velocity for the left side of the robot. This is converted to a desired
wheel angular velocity by dividing by the radius of the wheel. The difference between this and
the current wheel velocity is then bounded. An equivalent calculation is performed to find the
right wheel acceleration.

The acceleration is bounded to simulate the response of an electric motor. Specifically,
electric motors produce maximum torque when stopped, which reduces to zero at the peak
velocity of the motor, at which point, adding more power does not increase the speed of the
motor. This is simulated by bounding the wheel acceleration ω̇ according to a maximum ω̇max

and minimum ω̇min, that are defined by,

ω̇max =

{

k1

(

1− ω
k2

)

where ω ≥ 0,

k1 otherwise,

ω̇min =

{

−k1 where ω ≥ 0,

−k1

(

1 + ω
k2

)

otherwise,

where k1 is the nominal maximum wheel acceleration, and k2 is the nominal maximum wheel
velocity. The equations are split into two parts, since forward acceleration can be at a maximum
when the wheel is reversing, regardless of the speed, and similarly for reverse acceleration.

There are several forms of friction that affect the movement of the robot. For example, there
is rolling resistance for each wheel, and also friction acting on each skid pad. These varied forms
of friction are simulated as a single constant friction force that acts on each wheel against the
direction of motion of that wheel. Friction can be treated as a constant force with the strict
exception of when the wheel is stopped. To handle this exception, the time when the wheel will
stop is estimated, and if it occurs during the current simulation cycle, that cycle is broken up
according to when the wheel stops. This approach also allows the simulation to correctly handle
the situation when a wheel transitions from forward to reverse movement or visa versa.

Fox [43] gives the motion equations for a synchro-drive robot. Fox assumes that the accel-
eration v̇ and rate of change of heading θ̇ remain constant between commands. However, the
robot used here controls the wheel speeds using “set points” or target wheel velocities. This
means that the low-level controller will adjust the amount of power to each wheel several times
per cycle to try to achieve the desired velocities. For this reason, the overall acceleration can
change during a cycle, and the rate of change of heading can also change. For the purposes of
simulation, however, the wheel accelerations are assumed not to change over a cycle. Note that
a limitation of this assumption is that it may allow the wheel speed to exceed the maximum
possible.



Bibliography

[1] Giovanni Adorni, Stefano Cagnoni, Stefan Enderle, Gerhard K. Kraetzschmar, Monica
Mordonini, Michael Plagge, Marcus Ritter, Stefan Sablatnög, and Andreas Zell. Vision-
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